AP_KDECAN: remove KDECAN example KDECAN test is moved to CANTester

This commit is contained in:
Siddharth Purohit 2020-08-19 17:56:33 +05:30 committed by Andrew Tridgell
parent 8a0d98967f
commit 9b11ae0d2a
3 changed files with 0 additions and 378 deletions

View File

@ -1,358 +0,0 @@
/*
simple KDECAN network sniffer as an ArduPilot firmware
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#if (CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS || CONFIG_HAL_BOARD == HAL_BOARD_LINUX) && HAL_WITH_UAVCAN
#include <AP_HAL/CAN.h>
#include <AP_HAL/Semaphores.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/CAN.h>
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include <AP_HAL_ChibiOS/CAN.h>
#endif
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_Math/AP_Math.h>
#include <cinttypes>
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define debug_can(fmt, args...) do { hal.console->printf(fmt, ##args); } while (0)
#define NUM_ESCS 8
class KDECAN_sniffer {
public:
KDECAN_sniffer() {
for (uint8_t i = 0; i < NUM_ESCS; i++) {
_esc_info[i].mcu_id = 0xA5961824E7BD3C00 | i;
}
}
void init(void);
void loop(void);
void print_stats(void);
void send_enumeration(uint8_t num);
private:
uint8_t _driver_index = 0;
uint8_t _interface = 0;
uavcan::ICanDriver* _can_driver;
uint8_t _mask_received_pwm = 0;
struct esc_info {
uint8_t node_id;
uint64_t mcu_id;
uint64_t enum_timeout;
esc_info() : node_id(1), mcu_id(0), enum_timeout(0) {}
} _esc_info[NUM_ESCS];
uint8_t _max_node_id = 0;
static const uint8_t BROADCAST_NODE_ID = 1;
static const uint8_t ESC_INFO_OBJ_ADDR = 0;
static const uint8_t SET_PWM_OBJ_ADDR = 1;
static const uint8_t VOLTAGE_OBJ_ADDR = 2;
static const uint8_t CURRENT_OBJ_ADDR = 3;
static const uint8_t RPM_OBJ_ADDR = 4;
static const uint8_t TEMPERATURE_OBJ_ADDR = 5;
static const uint8_t GET_PWM_INPUT_OBJ_ADDR = 6;
static const uint8_t GET_PWM_OUTPUT_OBJ_ADDR = 7;
static const uint8_t MCU_ID_OBJ_ADDR = 8;
static const uint8_t UPDATE_NODE_ID_OBJ_ADDR = 9;
static const uint8_t START_ENUM_OBJ_ADDR = 10;
static const uint8_t TELEMETRY_OBJ_ADDR = 11;
};
static struct {
uint32_t frame_id;
uint32_t count;
} counters[100];
static void count_msg(uint32_t frame_id)
{
for (uint16_t i=0; i<ARRAY_SIZE(counters); i++) {
if (counters[i].frame_id == frame_id) {
counters[i].count++;
break;
}
if (counters[i].frame_id == 0) {
counters[i].frame_id = frame_id;
counters[i].count++;
break;
}
}
}
void KDECAN_sniffer::init(void)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
AP_HAL::CANManager* can_mgr = new ChibiOS::CANManager;
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
AP_HAL::CANManager* can_mgr = new Linux::CANManager;
#endif
if (can_mgr == nullptr) {
AP_HAL::panic("Couldn't allocate CANManager, something is very wrong");
}
const_cast <AP_HAL::HAL&> (hal).can_mgr[_driver_index] = can_mgr;
can_mgr->begin(1000000, _interface);
can_mgr->initialized(true);
if (!can_mgr->is_initialized()) {
debug_can("Can not initialised\n");
return;
}
_can_driver = can_mgr->get_driver();
if (_can_driver == nullptr) {
debug_can("KDECAN: no CAN driver\n\r");
return;
}
debug_can("KDECAN: init done\n\r");
}
void KDECAN_sniffer::loop(void)
{
if (_can_driver == nullptr) {
return;
}
uavcan::CanFrame empty_frame { (0 | uavcan::CanFrame::FlagEFF), nullptr, 0 };
const uavcan::CanFrame* select_frames[uavcan::MaxCanIfaces] { &empty_frame };
uavcan::MonotonicTime timeout = uavcan::MonotonicTime::fromMSec(AP_HAL::millis() + 1);
uavcan::CanSelectMasks inout_mask;
inout_mask.read = 1 << _interface;
uavcan::CanSelectMasks in_mask = inout_mask;
_can_driver->select(inout_mask, select_frames, timeout);
if (in_mask.read & inout_mask.read) {
uavcan::CanFrame frame;
uavcan::MonotonicTime time;
uavcan::UtcTime utc_time;
uavcan::CanIOFlags flags {};
int16_t res = _can_driver->getIface(_interface)->receive(frame, time, utc_time, flags);
if (res == 1) {
uint32_t id = frame.id & uavcan::CanFrame::MaskExtID;
uint8_t object_address = id & 0xFF;
uint8_t esc_num = uint8_t((id >> 8) & 0xFF);
count_msg(id);
uint8_t i = 0;
uint8_t n = NUM_ESCS;
if (esc_num != BROADCAST_NODE_ID) {
for (; i < NUM_ESCS; i++) {
if (object_address == UPDATE_NODE_ID_OBJ_ADDR) {
if (_esc_info[i].mcu_id == be64toh(*((be64_t*) &(frame.data[0])))) {
n = i + 1;
break;
}
} else if (_esc_info[i].node_id == esc_num) {
n = i + 1;
break;
}
}
}
while (i < n) {
uavcan::CanFrame res_frame;
switch (object_address) {
case ESC_INFO_OBJ_ADDR: {
uint8_t info[5] { 1, 2, 3, 4, 0 };
res_frame.dlc = 5;
memcpy(res_frame.data, info, 5);
break;
}
case SET_PWM_OBJ_ADDR: {
if ((1 << (esc_num - 2) & _mask_received_pwm) && _mask_received_pwm != ((1 << _max_node_id) - 1)) {
count_msg(0xFFFFFFF0);
_mask_received_pwm = 0;
}
_mask_received_pwm |= 1 << (esc_num - 2);
if (_mask_received_pwm == ((1 << _max_node_id) - 1)) {
count_msg(0xFFFFFFFF);
_mask_received_pwm = 0;
}
res_frame.dlc = 0;
break;
}
case UPDATE_NODE_ID_OBJ_ADDR: {
if (_esc_info[i].enum_timeout != 0 && _esc_info[i].enum_timeout >= AP_HAL::micros64()) {
_esc_info[i].node_id = esc_num;
_max_node_id = MAX(_max_node_id, esc_num - 2 + 1);
hal.console->printf("Set node ID %d for ESC %d\n", esc_num, i);
}
_esc_info[i].enum_timeout = 0;
res_frame.dlc = 1;
memcpy(res_frame.data, &(_esc_info[i].node_id), 1);
break;
}
case START_ENUM_OBJ_ADDR: {
_esc_info[i].enum_timeout = AP_HAL::micros64() + be16toh(*((be16_t*) &(frame.data[0]))) * 1000;
hal.console->printf("Starting enumeration for ESC %d, timeout %" PRIu64 "\n", i, _esc_info[i].enum_timeout);
i++;
continue;
}
case TELEMETRY_OBJ_ADDR: {
uint8_t data[7] {};
*((be16_t*) &data[0]) = htobe16(get_random16());
*((be16_t*) &data[2]) = htobe16(get_random16());
*((be16_t*) &data[4]) = htobe16(get_random16());
data[6] = uint8_t(float(rand()) / RAND_MAX * 40.0f + 15);
res_frame.dlc = 7;
memcpy(res_frame.data, data, 7);
break;
}
case VOLTAGE_OBJ_ADDR:
case CURRENT_OBJ_ADDR:
case RPM_OBJ_ADDR:
case TEMPERATURE_OBJ_ADDR:
case GET_PWM_INPUT_OBJ_ADDR:
case GET_PWM_OUTPUT_OBJ_ADDR:
case MCU_ID_OBJ_ADDR:
default:
// discard frame
return;
}
res_frame.id = (_esc_info[i].node_id << 16) | object_address | uavcan::CanFrame::FlagEFF;
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::millis() + 500);
int16_t res2 = _can_driver->getIface(_interface)->send(res_frame, timeout, 0);
if (res2 == 1) {
i++;
}
}
}
}
}
void KDECAN_sniffer::print_stats(void)
{
hal.console->printf("%u\n", (unsigned)AP_HAL::micros());
for (uint16_t i=0;i<100;i++) {
if (counters[i].frame_id == 0) {
break;
}
hal.console->printf("0x%08" PRIX32 ": %" PRIu32 "\n", counters[i].frame_id, counters[i].count);
counters[i].count = 0;
}
hal.console->printf("\n");
}
void KDECAN_sniffer::send_enumeration(uint8_t num)
{
if (_esc_info[num].enum_timeout == 0 || AP_HAL::micros64() > _esc_info[num].enum_timeout) {
_esc_info[num].enum_timeout = 0;
hal.console->printf("Not running enumeration for ESC %d\n", num);
return;
}
while (true) {
uint8_t mcu[8] {};
*((be64_t*) mcu) = htobe64(_esc_info[num].mcu_id);
uavcan::CanFrame res_frame { (_esc_info[num].node_id << 16) | START_ENUM_OBJ_ADDR | uavcan::CanFrame::FlagEFF,
mcu,
8 };
uavcan::MonotonicTime timeout = uavcan::MonotonicTime::fromMSec(AP_HAL::millis() + 1);
int16_t res = _can_driver->getIface(_interface)->send(res_frame, timeout, 0);
if (res == 1) {
return;
}
}
}
static KDECAN_sniffer sniffer;
void setup(void)
{
hal.scheduler->delay(2000);
hal.console->printf("Starting KDECAN sniffer\n");
sniffer.init();
}
void loop(void)
{
sniffer.loop();
static uint32_t last_print_ms;
uint32_t now = AP_HAL::millis();
if (now - last_print_ms >= 1000) {
last_print_ms = now;
sniffer.print_stats();
}
if (hal.console->available() >= 3) {
char c = hal.console->read();
if (c == 'e') {
c = hal.console->read();
if (c == ' ') {
c = hal.console->read();
if (c >= '0' && c < '9') {
uint8_t num = c - '0';
sniffer.send_enumeration(num);
}
}
} else if (c == 'r') {
hal.console->printf("rebooting\n");
hal.scheduler->reboot(false);
}
}
// auto-reboot for --upload
if (hal.console->available() > 50) {
hal.console->printf("rebooting\n");
hal.scheduler->reboot(false);
}
}
AP_HAL_MAIN();
#else
#include <stdio.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
static void loop() { }
static void setup()
{
printf("Board not currently supported\n");
}
AP_HAL_MAIN();
#endif

View File

@ -1,13 +0,0 @@
This is a KDECAN sniffer designed to run on an ArduPilot board. It can
be used to watch traffic on a KDECAN bus as well as simulate a 8 ESCs (macro changeable).
To build and upload for a Pixhawk style board run this:
```
./waf configure --board fmuv3
./waf --target examples/KDECAN_sniffer --upload
```
then connect on the USB console. You will see 1Hz packet stats.
You can respond to enumeration by writing 'e X', with X being the ESC number, zero index based.

View File

@ -1,7 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
def build(bld):
bld.ap_example(
use='ap',
)