AC_Avoidance: add Object Avoidance Database

This commit is contained in:
Tom Pittenger 2019-06-28 22:51:55 -07:00 committed by Tom Pittenger
parent 2dba187d30
commit 9ad6d14c16
6 changed files with 710 additions and 55 deletions

View File

@ -14,7 +14,7 @@
*/ */
#include "AP_OABendyRuler.h" #include "AP_OABendyRuler.h"
#include <AC_Avoidance/AP_OADatabase.h>
#include <AC_Fence/AC_Fence.h> #include <AC_Fence/AC_Fence.h>
#include <AP_AHRS/AP_AHRS.h> #include <AP_AHRS/AP_AHRS.h>
@ -157,7 +157,7 @@ float AP_OABendyRuler::calc_avoidance_margin(const Location &start, const Locati
} }
float proximity_margin; float proximity_margin;
if (!calc_margin_from_proximity_sensors(start, end, proximity_margin)) { if (!calc_margin_from_object_database(start, end, proximity_margin)) {
proximity_margin = FLT_MAX; proximity_margin = FLT_MAX;
} }
@ -228,20 +228,12 @@ bool AP_OABendyRuler::calc_margin_from_polygon_fence(const Location &start, cons
// calculate minimum distance between a path and proximity sensor obstacles // calculate minimum distance between a path and proximity sensor obstacles
// on success returns true and updates margin // on success returns true and updates margin
bool AP_OABendyRuler::calc_margin_from_proximity_sensors(const Location &start, const Location &end, float &margin) bool AP_OABendyRuler::calc_margin_from_object_database(const Location &start, const Location &end, float &margin)
{ {
AP_Proximity* prx = AP_Proximity::get_singleton(); #if !HAL_MINIMIZE_FEATURES
if (prx == nullptr) { // exit immediately if db is empty
return false; AP_OADatabase *oaDb = AP::oadatabase();
} if (oaDb == nullptr || !oaDb->healthy()) {
// retrieve obstacles from proximity library
if (!prx->copy_locations(_prx_locs, ARRAY_SIZE(_prx_locs), _prx_loc_count)) {
return false;
}
// exit if no obstacles
if (_prx_loc_count == 0) {
return false; return false;
} }
@ -252,40 +244,28 @@ bool AP_OABendyRuler::calc_margin_from_proximity_sensors(const Location &start,
} }
// check each obstacle's distance from segment // check each obstacle's distance from segment
bool valid_loc_found = false;
float smallest_margin = FLT_MAX; float smallest_margin = FLT_MAX;
uint32_t now = AP_HAL::millis(); for (uint16_t i=0; i<oaDb->database_count(); i++) {
for (uint16_t i=0; i<_prx_loc_count; i++) {
// check time of objects is still valid
if ((now - _prx_locs[i].last_update_ms) > PROXIMITY_LOCATION_TIMEOUT_MS) {
continue;
}
valid_loc_found = true;
// convert obstacle's location to offset (in cm) from EKF origin // convert obstacle's location to offset (in cm) from EKF origin
Vector2f point; Vector2f point;
if (!_prx_locs[i].loc.get_vector_xy_from_origin_NE(point)) { if (!oaDb->get_item(i).loc.get_vector_xy_from_origin_NE(point)) {
continue; continue;
} }
// margin is distance between line segment and obstacle minus obstacle's radius // margin is distance between line segment and obstacle minus obstacle's radius
const float m = Vector2f::closest_distance_between_line_and_point(start_NE, end_NE, point) * 0.01f - _prx_locs[i].radius_m; const float m = Vector2f::closest_distance_between_line_and_point(start_NE, end_NE, point) * 0.01f - oaDb->get_accuracy();
if (m < smallest_margin) { if (m < smallest_margin) {
smallest_margin = m; smallest_margin = m;
} }
} }
// if no valid obstacles found then they've all expired so clear buffer
if (!valid_loc_found) {
_prx_loc_count = 0;
}
// return smallest margin // return smallest margin
if (smallest_margin < FLT_MAX) { if (smallest_margin < FLT_MAX) {
margin = smallest_margin; margin = smallest_margin;
return true; return true;
} }
#endif
return false; return false;
} }

View File

@ -3,7 +3,6 @@
#include <AP_Common/AP_Common.h> #include <AP_Common/AP_Common.h>
#include <AP_Common/Location.h> #include <AP_Common/Location.h>
#include <AP_Math/AP_Math.h> #include <AP_Math/AP_Math.h>
#include <AP_Proximity/AP_Proximity.h>
#include <AP_HAL/AP_HAL.h> #include <AP_HAL/AP_HAL.h>
/* /*
@ -40,7 +39,7 @@ private:
// calculate minimum distance between a path and proximity sensor obstacles // calculate minimum distance between a path and proximity sensor obstacles
// on success returns true and updates margin // on success returns true and updates margin
bool calc_margin_from_proximity_sensors(const Location &start, const Location &end, float &margin); bool calc_margin_from_object_database(const Location &start, const Location &end, float &margin);
// configuration parameters // configuration parameters
float _lookahead; // object avoidance will look this many meters ahead of vehicle float _lookahead; // object avoidance will look this many meters ahead of vehicle
@ -48,6 +47,4 @@ private:
// internal variables used by background thread // internal variables used by background thread
float _current_lookahead; // distance (in meters) ahead of the vehicle we are looking for obstacles float _current_lookahead; // distance (in meters) ahead of the vehicle we are looking for obstacles
AP_Proximity::Proximity_Location _prx_locs[PROXIMITY_MAX_DIRECTION]; // buffer of locations from proximity library
uint16_t _prx_loc_count;
}; };

View File

@ -0,0 +1,492 @@
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_OADatabase.h"
#if !HAL_MINIMIZE_FEATURES
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Math/AP_Math.h>
extern const AP_HAL::HAL& hal;
#ifndef AP_OADATABASE_TIMEOUT_SECONDS_DEFAULT
#define AP_OADATABASE_TIMEOUT_SECONDS_DEFAULT 10
#endif
#ifndef AP_OADATABASE_SIZE_DEFAULT
#define AP_OADATABASE_SIZE_DEFAULT 100
#endif
#ifndef AP_OADATABASE_QUEUE_SIZE_DEFAULT
#define AP_OADATABASE_QUEUE_SIZE_DEFAULT 80
#endif
const AP_Param::GroupInfo AP_OADatabase::var_info[] = {
// @Param: SIZE
// @DisplayName: OADatabase maximum number of points
// @Description: OADatabase maximum number of points. Set to 0 to disable the OA Database. Larger means more points but is more cpu intensive to process
// @Range: 0 10000
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("SIZE", 1, AP_OADatabase, _database_size_param, AP_OADATABASE_SIZE_DEFAULT),
// @Param: EXPIRE
// @DisplayName: OADatabase item timeout
// @Description: OADatabase item timeout. The time an item will linger without any updates before it expires. Zero means never expires which is useful for a sent-once static environment but terrible for dynamic ones.
// @Units: s
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXPIRE", 2, AP_OADatabase, _database_expiry_seconds, AP_OADATABASE_TIMEOUT_SECONDS_DEFAULT),
// @Param: QUEUE_SIZE
// @DisplayName: OADatabase queue maximum number of points
// @Description: OADatabase queue maximum number of points. This in an input buffer size. Larger means it can handle larger bursts of incoming data points to filter into the database. No impact on cpu, only RAM. Recommend larger for faster datalinks or for sensors that generate a lot of data.
// @Range: 1 200
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("QUEUE_SIZE", 3, AP_OADatabase, _queue_size_param, AP_OADATABASE_QUEUE_SIZE_DEFAULT),
// @Param: OUTPUT
// @DisplayName: OADatabase output level
// @Description: OADatabase output level to configure which database objects are sent to the ground station. All data is always available internally for avoidance algorithms.
// @Values: 0:Disabled,1:Send only HIGH importance items,2:Send HIGH and NORMAL importance items,3:Send all items
// @User: Advanced
AP_GROUPINFO("OUTPUT", 4, AP_OADatabase, _output_level, (float)OA_DbOutputLevel::OUTPUT_LEVEL_SEND_HIGH),
AP_GROUPEND
};
AP_OADatabase::AP_OADatabase()
{
if (_singleton != nullptr) {
AP_HAL::panic("AP_OADatabase must be singleton");
}
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
void AP_OADatabase::init()
{
init_database();
init_queue();
if (!healthy()) {
gcs().send_text(MAV_SEVERITY_INFO, "DB init failed . Sizes queue:%u, db:%u", (unsigned int)_queue.size, (unsigned int)_database.size);
delete _queue.items;
delete[] _database.items;
return;
}
}
void AP_OADatabase::update()
{
if (!healthy()) {
return;
}
process_queue();
optimize_db_filter();
database_items_remove_all_expired();
}
// push a location into the database
void AP_OADatabase::queue_push(const Location &loc, const uint32_t timestamp_ms, const float distance, const float angle)
{
if (!healthy()) {
return;
}
AP_OADatabase::OA_DbItemImportance importance = AP_OADatabase::OA_DbItemImportance::Normal;
if (distance <= 0 || angle < 0 || angle > 360) {
// sanity check
importance = AP_OADatabase::OA_DbItemImportance::Normal;
} else if (distance < 10 && (angle > (360-10) || angle < 10)) {
// far and directly in front +/- 10deg
importance = AP_OADatabase::OA_DbItemImportance::High;
} else if (distance < 5 && (angle > (360-30) || angle < 30)) {
// kinda far and forward of us +/- 30deg
importance = AP_OADatabase::OA_DbItemImportance::High;
} else if (distance < 3 && (angle > (360-90) || angle < 90)) {
// near and ahead +/- 90deg
importance = AP_OADatabase::OA_DbItemImportance::High;
} else if (distance < 1.5) {
// very close anywhere
importance = AP_OADatabase::OA_DbItemImportance::High;
} else if (distance >= 10) {
// really far away
importance = AP_OADatabase::OA_DbItemImportance::Low;
} else if (distance < 5 && (angle <= (360-90) || angle >= 90)) {
// kinda far and behind us
importance = AP_OADatabase::OA_DbItemImportance::Low;
}
const OA_DbItem item = {loc, timestamp_ms, 0, 0, importance};
{
WITH_SEMAPHORE(_queue.sem);
_queue.items->push(item);
}
}
void AP_OADatabase::init_queue()
{
_queue.size = _queue_size_param;
if (_queue.size == 0) {
return;
}
_queue.items = new ObjectBuffer<OA_DbItem>(_queue.size);
}
void AP_OADatabase::init_database()
{
_database.size = _database_size_param;
if (_database_size_param == 0) {
return;
}
_database.items = new OA_DbItem[_database.size];
}
void AP_OADatabase::optimize_db_filter()
{
// TODO: check database size and if we're getting full
// we should grow the database size and/or increase
// _database_filter_m so less objects go into it and let
// the existing ones timeout naturally
const float filter_m_backup = _database.filter_m;
if (_database.count > (_database.size * 0.90f)) {
// we're almost full, lets increase the filter size by requiring more
// spacing between points so less things get put into the database
_database.filter_m = MIN(_database.filter_m*_database.filter_grow_rate, _database.filter_max_m);
} else if (_database.count < (_database.size * 0.85f)) {
// we have some room, lets loosen the filter requirement (smaller object points) to allow more samples
_database.filter_m = MAX(_database.filter_m*_database.filter_shrink_rate,_database.filter_min_m);
}
// recompute the the radius filters
if (!is_equal(filter_m_backup,_database.filter_m)) {
_radius_importance_low = MIN(_database.filter_m*4,_database.filter_max_m);
_radius_importance_normal = _database.filter_m;
_radius_importance_high = MAX(_database.filter_m*0.25,_database.filter_min_m);
}
}
// get bitmask of gcs channels item should be sent to based on its importance
// returns 0xFF (send to all channels) if should be sent, 0 if it should not be sent
uint8_t AP_OADatabase::get_send_to_gcs_flags(const OA_DbItemImportance importance)
{
switch (importance) {
case OA_DbItemImportance::Low:
if (_output_level.get() >= (int8_t)OA_DbOutputLevel::OUTPUT_LEVEL_SEND_ALL) {
return 0xFF;
}
break;
case OA_DbItemImportance::Normal:
if (_output_level.get() >= (int8_t)OA_DbOutputLevel::OUTPUT_LEVEL_SEND_HIGH_AND_NORMAL) {
return 0xFF;
}
break;
case OA_DbItemImportance::High:
if (_output_level.get() >= (int8_t)OA_DbOutputLevel::OUTPUT_LEVEL_SEND_HIGH) {
return 0xFF;
}
break;
}
return 0x0;
}
float AP_OADatabase::get_radius(const OA_DbItemImportance importance)
{
switch (importance) {
case OA_DbItemImportance::Low:
return _radius_importance_low;
default:
case OA_DbItemImportance::Normal:
return _radius_importance_normal;
case OA_DbItemImportance::High:
return _radius_importance_high;
}
}
// returns true when there's more work inthe queue to do
bool AP_OADatabase::process_queue()
{
if (!healthy()) {
return false;
}
// processing queue by moving those entries into the database
// Using a for with fixed size is better than while(!empty) because the
// while could get us stuck here longer than expected if we're getting
// a lot of values pushing into it while we're trying to empty it. With
// the for we know we will exit at an expected time
const uint16_t queue_available = MIN(_queue.items->available(), 100U);
if (queue_available == 0) {
return false;
}
for (uint16_t queue_index=0; queue_index<queue_available; queue_index++) {
OA_DbItem item;
bool pop_success;
{
WITH_SEMAPHORE(_queue.sem);
pop_success = _queue.items->pop(item);
}
if (!pop_success) {
return false;
}
item.radius = get_radius(item.importance);
item.send_to_gcs = get_send_to_gcs_flags(item.importance);
// compare item to all items in database. If found a similar item, update the existing, else add it as a new one
bool found = false;
for (uint16_t i=0; i<_database.count; i++) {
if (is_close_to_item_in_database(i, item)) {
database_item_refresh(i, item.timestamp_ms, item.radius);
found = true;
break;
}
}
if (!found) {
database_item_add(item);
}
}
return (_queue.items->available() > 0);
}
void AP_OADatabase::database_item_add(const OA_DbItem &item)
{
if (_database.count >= _database.size) {
return;
}
_database.items[_database.count] = item;
_database.items[_database.count].send_to_gcs = get_send_to_gcs_flags(_database.items[_database.count].importance);
_database.count++;
}
void AP_OADatabase::database_item_remove(const uint16_t index)
{
if (index >= _database.count || _database.count == 0) {
// index out of range
return;
}
// radius of 0 tells the GCS we don't care about it any more (aka it expired)
_database.items[index].radius = 0;
_database.items[index].send_to_gcs = get_send_to_gcs_flags(_database.items[index].importance);
_database.count--;
if (_database.count == 0) {
return;
}
if (index != _database.count) {
// copy last object in array over expired object
_database.items[index] = _database.items[_database.count];
_database.items[index].send_to_gcs = get_send_to_gcs_flags(_database.items[index].importance);
}
}
void AP_OADatabase::database_item_refresh(const uint16_t index, const uint32_t timestamp_ms, const float radius)
{
if (index >= _database.count) {
// index out of range
return;
}
const bool is_different =
(!is_equal(_database.items[index].radius, radius)) ||
(timestamp_ms - _database.items[index].timestamp_ms >= 500);
if (is_different) {
// update timestamp and radius on close object so it stays around longer
// and trigger resending to GCS
_database.items[index].timestamp_ms = timestamp_ms;
_database.items[index].radius = radius;
_database.items[index].send_to_gcs = get_send_to_gcs_flags(_database.items[index].importance);
}
}
void AP_OADatabase::database_items_remove_all_expired()
{
// calculate age of all items in the _database
if (_database_expiry_seconds <= 0) {
// zero means never expire. This is not normal behavior but perhaps you could send a static
// environment once that you don't want to have to constantly update
return;
}
const uint32_t now_ms = AP_HAL::millis();
const uint32_t expiry_ms = (uint32_t)_database_expiry_seconds * 1000;
uint16_t index = 0;
while (index < _database.count) {
if (now_ms - _database.items[index].timestamp_ms > expiry_ms) {
database_item_remove(index);
} else {
// overtime, the item radius will grow in size. If too big, remove it before the timer
_database.items[index].radius *= _database.radius_grow_rate;
if (_database.items[index].radius >= _database.filter_max_m) {
database_item_remove(index);
} else {
index++;
}
}
}
}
// returns true if a similar object already exists in database. When true, the object timer is also reset
bool AP_OADatabase::is_close_to_item_in_database(const uint16_t index, const OA_DbItem &item) const
{
if (index >= _database.count) {
// index out of range
return false;
}
return (_database.items[index].loc.get_distance(item.loc) < item.radius);
}
// send ADSB_VEHICLE mavlink messages
void AP_OADatabase::send_adsb_vehicle(mavlink_channel_t chan, uint16_t interval_ms)
{
// ensure database's send_to_gcs field is large enough
static_assert(MAVLINK_COMM_NUM_BUFFERS <= sizeof(OA_DbItem::send_to_gcs) * 8,
"AP_OADatabase's OA_DBItem.send_to_gcs bitmask must be large enough to hold MAVLINK_COMM_NUM_BUFFERS");
if ((_output_level.get() <= (int8_t)OA_DbOutputLevel::OUTPUT_LEVEL_DISABLED) || !healthy() || (chan >= MAVLINK_COMM_NUM_BUFFERS)) {
return;
}
const uint8_t chan_as_bitmask = 1 << chan;
const char callsign[9] = "OA_DB";
// calculate how many messages we should send
const uint32_t now_ms = AP_HAL::millis();
uint16_t num_to_send = 1;
uint16_t num_sent = 0;
if ((_last_send_to_gcs_ms[chan] != 0) && (interval_ms > 0)) {
uint32_t diff_ms = now_ms - _last_send_to_gcs_ms[chan];
num_to_send = MAX(diff_ms / interval_ms, 1U);
}
_last_send_to_gcs_ms[chan] = now_ms;
// send unsent objects until output buffer is full or have sent enough
for (uint16_t i=0; i < _database.count; i++) {
if (!HAVE_PAYLOAD_SPACE(chan, ADSB_VEHICLE) || (num_sent >= num_to_send)) {
// all done for now
return;
}
const uint16_t idx = _next_index_to_send[chan];
// prepare to send next object
_next_index_to_send[chan]++;
if (_next_index_to_send[chan] >= _database.count) {
_next_index_to_send[chan] = 0;
}
if ((_database.items[idx].send_to_gcs & chan_as_bitmask) == 0) {
continue;
}
mavlink_msg_adsb_vehicle_send(chan,
idx,
_database.items[idx].loc.lat,
_database.items[idx].loc.lng,
0, // altitude_type
_database.items[idx].loc.alt,
0, // heading
0, // hor_velocity
0, // ver_velocity
callsign, // callsign
255, // emitter_type
0, // tslc
0, // flags
(uint16_t)(_database.items[idx].radius * 100.f)); // squawk
// unmark item for sending to gcs
_database.items[idx].send_to_gcs &= ~chan_as_bitmask;
// update highest index sent to GCS
_highest_index_sent[chan] = MAX(idx, _highest_index_sent[chan]);
// update count sent
num_sent++;
}
// clear expired items in case the database size shrank
while (_highest_index_sent[chan] > _database.count) {
if (!HAVE_PAYLOAD_SPACE(chan, ADSB_VEHICLE) || (num_sent >= num_to_send)) {
// all done for now
return;
}
const uint16_t idx = _highest_index_sent[chan];
_highest_index_sent[chan]--;
if (_database.items[idx].importance != OA_DbItemImportance::High) {
continue;
}
mavlink_msg_adsb_vehicle_send(chan,
idx, // id
0, // latitude
0, // longitude
0, // altitude_type
0, // altitude
0, // heading
0, // hor_velocity
0, // ver_velocity
callsign, // callsign
255, // emitter_type
0, // tslc
0, // flags
0); // squawk
// update count sent
num_sent++;
}
}
// singleton instance
AP_OADatabase *AP_OADatabase::_singleton;
#endif //!HAL_MINIMIZE_FEATURES
namespace AP {
AP_OADatabase *oadatabase()
{
return AP_OADatabase::get_singleton();
}
}

View File

@ -0,0 +1,144 @@
#pragma once
#include <AP_HAL/AP_HAL.h>
#include <AP_Common/Location.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#if !HAL_MINIMIZE_FEATURES
#include <AP_Param/AP_Param.h>
class AP_OADatabase {
public:
AP_OADatabase();
/* Do not allow copies */
AP_OADatabase(const AP_OADatabase &other) = delete;
AP_OADatabase &operator=(const AP_OADatabase&) = delete;
// get singleton instance
static AP_OADatabase *get_singleton() {
return _singleton;
}
enum OA_DbItemImportance {
Low, Normal, High
};
struct OA_DbItem {
Location loc; // location of object. TODO: turn this into Vector2Int to save memory
uint32_t timestamp_ms; // system time that object was last updated
float radius; // objects radius in meters
uint8_t send_to_gcs; // bitmask of mavlink comports to which details of this object should be sent
OA_DbItemImportance importance;
};
void init();
void update();
// push a location into the database
void queue_push(const Location &loc, const uint32_t timestamp_ms, const float distance, const float angle);
// returns true if database is healthy
bool healthy() const { return (_queue.items != nullptr) && (_database.items != nullptr); }
// fetch an item in database. Undefined result when i >= _database.count.
const OA_DbItem& get_item(uint32_t i) const { return _database.items[i]; }
// get radius (in meters) of objects in database
float get_accuracy() const { return _database.filter_m; }
// get number of items in the database
uint16_t database_count() const { return _database.count; }
// empty queue and try and put into database. Return true if there's more work to do
bool process_queue();
// send ADSB_VEHICLE mavlink messages
void send_adsb_vehicle(mavlink_channel_t chan, uint16_t interval_ms);
static const struct AP_Param::GroupInfo var_info[];
private:
// initialise
void init_queue();
void init_database();
// check queue and database sizes and adjust filter criteria to optimize use
void optimize_db_filter();
// database item management
void database_item_add(const OA_DbItem &item);
void database_item_refresh(const uint16_t index, const uint32_t timestamp_ms, const float radius);
void database_item_remove(const uint16_t index);
void database_items_remove_all_expired();
// get bitmask of gcs channels item should be sent to based on its importance
// returns 0xFF (send to all channels) if should be sent or 0 if it should not be sent
uint8_t get_send_to_gcs_flags(const OA_DbItemImportance importance);
// used to determine the filter radius
float get_radius(const OA_DbItemImportance importance);
// returns true if database item "index" is close to "item"
bool is_close_to_item_in_database(const uint16_t index, const OA_DbItem &item) const;
// enum for use with _OUTPUT parameter
enum class OA_DbOutputLevel {
OUTPUT_LEVEL_DISABLED = 0,
OUTPUT_LEVEL_SEND_HIGH = 1,
OUTPUT_LEVEL_SEND_HIGH_AND_NORMAL = 2,
OUTPUT_LEVEL_SEND_ALL = 3
};
// parameters
AP_Int16 _queue_size_param; // queue size
AP_Int16 _database_size_param; // db size
AP_Int8 _database_expiry_seconds; // objects expire after this timeout
AP_Int8 _output_level; // controls which items should be sent to GCS
struct {
ObjectBuffer<OA_DbItem> *items; // thread safe incoming queue of points from proximity sensor to be put into database
uint16_t size; // cached value of _queue_size_param.
HAL_Semaphore sem; // semaphore for multi-thread use of queue
} _queue;
struct {
OA_DbItem *items; // array of objects in the database
float filter_m = 0.2f; // object avoidance database optimization level radius. Min distance between each fence point. Larger means lower resolution
const float filter_max_m = 10.0f; // filter value max size allowed to grow to
const float filter_min_m = 0.011f; // worst case resolution of int32 lat/lng value at equator is 1.1cm;
const float filter_grow_rate = 1.03f; // db filter how fast you grow to reduce items getting into dB
const float filter_shrink_rate = 0.99f; // db filter how fast you shrink to increase items getting into dB
const float radius_grow_rate = 1.10f; // db item radius growth over time. Resets if refreshed, otherwise decaying items grow
uint16_t count; // number of objects in the items array
uint16_t size; // cached value of _database_size_param that sticks after initialized
} _database;
uint16_t _next_index_to_send[MAVLINK_COMM_NUM_BUFFERS]; // index of next object in _database to send to GCS
uint16_t _highest_index_sent[MAVLINK_COMM_NUM_BUFFERS]; // highest index in _database sent to GCS
uint32_t _last_send_to_gcs_ms[MAVLINK_COMM_NUM_BUFFERS];// system time that send_adsb_vehicle was last called
float _radius_importance_low = _database.filter_m;
float _radius_importance_normal = _database.filter_m;
float _radius_importance_high = _database.filter_m;
static AP_OADatabase *_singleton;
};
#else
class AP_OADatabase {
public:
static AP_OADatabase *get_singleton() { return nullptr; }
void init() {};
void queue_push(const Location &loc, const uint32_t timestamp_ms, const float distance, const float angle) {};
bool healthy() const { return false; }
void send_adsb_vehicle(mavlink_channel_t chan, uint16_t interval_ms) {};
};
#endif // #if !HAL_MINIMIZE_FEATURES
namespace AP {
AP_OADatabase *oadatabase();
};

View File

@ -51,11 +51,17 @@ const AP_Param::GroupInfo AP_OAPathPlanner::var_info[] = {
// @DisplayName: Object Avoidance wide margin distance // @DisplayName: Object Avoidance wide margin distance
// @Description: Object Avoidance will ignore objects more than this many meters from vehicle // @Description: Object Avoidance will ignore objects more than this many meters from vehicle
// @Units: m // @Units: m
// @Range: 1 100 // @Range: 0.1 100
// @Increment: 1 // @Increment: 1
// @User: Standard // @User: Standard
AP_GROUPINFO("MARGIN_MAX", 3, AP_OAPathPlanner, _margin_max, OA_MARGIN_MAX_DEFAULT), AP_GROUPINFO("MARGIN_MAX", 3, AP_OAPathPlanner, _margin_max, OA_MARGIN_MAX_DEFAULT),
#if !HAL_MINIMIZE_FEATURES
// @Group: DB_
// @Path: AP_OADatabase.cpp
AP_SUBGROUPINFO(_oadatabase, "DB_", 4, AP_OAPathPlanner, AP_OADatabase),
#endif
AP_GROUPEND AP_GROUPEND
}; };
@ -74,7 +80,7 @@ void AP_OAPathPlanner::init()
switch (_type) { switch (_type) {
case OA_PATHPLAN_DISABLED: case OA_PATHPLAN_DISABLED:
// do nothing // do nothing
break; return;
case OA_PATHPLAN_BENDYRULER: case OA_PATHPLAN_BENDYRULER:
if (_oabendyruler == nullptr) { if (_oabendyruler == nullptr) {
_oabendyruler = new AP_OABendyRuler(); _oabendyruler = new AP_OABendyRuler();
@ -86,6 +92,9 @@ void AP_OAPathPlanner::init()
} }
break; break;
} }
_oadatabase.init();
start_thread();
} }
// pre-arm checks that algorithms have been initialised successfully // pre-arm checks that algorithms have been initialised successfully
@ -112,6 +121,29 @@ bool AP_OAPathPlanner::pre_arm_check(char *failure_msg, uint8_t failure_msg_len)
return true; return true;
} }
bool AP_OAPathPlanner::start_thread()
{
WITH_SEMAPHORE(_rsem);
if (_thread_created) {
return true;
}
if (_type == OA_PATHPLAN_DISABLED) {
return false;
}
// create the avoidance thread as low priority. It should soak
// up spare CPU cycles to fill in the avoidance_result structure based
// on requests in avoidance_request
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_OAPathPlanner::avoidance_thread, void),
"avoidance",
8192, AP_HAL::Scheduler::PRIORITY_IO, -1)) {
return false;
}
_thread_created = true;
return true;
}
// provides an alternative target location if path planning around obstacles is required // provides an alternative target location if path planning around obstacles is required
// returns true and updates result_loc with an intermediate location // returns true and updates result_loc with an intermediate location
AP_OAPathPlanner::OA_RetState AP_OAPathPlanner::mission_avoidance(const Location &current_loc, AP_OAPathPlanner::OA_RetState AP_OAPathPlanner::mission_avoidance(const Location &current_loc,
@ -120,26 +152,13 @@ AP_OAPathPlanner::OA_RetState AP_OAPathPlanner::mission_avoidance(const Location
Location &result_origin, Location &result_origin,
Location &result_destination) Location &result_destination)
{ {
// exit immediately if disabled // exit immediately if disabled or thread is not running from a failed init
if (_type == OA_PATHPLAN_DISABLED) { if (_type == OA_PATHPLAN_DISABLED || !_thread_created) {
return OA_NOT_REQUIRED; return OA_NOT_REQUIRED;
} }
WITH_SEMAPHORE(_rsem);
if (!_thread_created) {
// create the avoidance thread as low priority. It should soak
// up spare CPU cycles to fill in the avoidance_result structure based
// on requests in avoidance_request
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_OAPathPlanner::avoidance_thread, void),
"avoidance",
8192, AP_HAL::Scheduler::PRIORITY_IO, -1)) {
return OA_ERROR;
}
_thread_created = true;
}
const uint32_t now = AP_HAL::millis(); const uint32_t now = AP_HAL::millis();
WITH_SEMAPHORE(_rsem);
// place new request for the thread to work on // place new request for the thread to work on
avoidance_request.current_loc = current_loc; avoidance_request.current_loc = current_loc;
@ -180,15 +199,31 @@ AP_OAPathPlanner::OA_RetState AP_OAPathPlanner::mission_avoidance(const Location
void AP_OAPathPlanner::avoidance_thread() void AP_OAPathPlanner::avoidance_thread()
{ {
while (true) { while (true) {
#if !HAL_MINIMIZE_FEATURES
// run at 10hz or less // if database queue needs attention, service it faster
if (_oadatabase.process_queue()) {
hal.scheduler->delay(1);
} else {
hal.scheduler->delay(20);
}
const uint32_t now = AP_HAL::millis();
if (now - avoidance_latest_ms < 100) {
continue;
}
avoidance_latest_ms = now;
_oadatabase.update();
#else
hal.scheduler->delay(100); hal.scheduler->delay(100);
const uint32_t now = AP_HAL::millis();
#endif
Location origin_new; Location origin_new;
Location destination_new; Location destination_new;
{ {
WITH_SEMAPHORE(_rsem); WITH_SEMAPHORE(_rsem);
uint32_t now = AP_HAL::millis();
if (now - avoidance_request.request_time_ms > OA_TIMEOUT_MS) { if (now - avoidance_request.request_time_ms > OA_TIMEOUT_MS) {
// this is a very old request, don't process it // this is a very old request, don't process it
continue; continue;
@ -216,6 +251,7 @@ void AP_OAPathPlanner::avoidance_thread()
res = OA_SUCCESS; res = OA_SUCCESS;
} }
break; break;
case OA_PATHPLAN_DIJKSTRA: case OA_PATHPLAN_DIJKSTRA:
if (_oadijkstra == nullptr) { if (_oadijkstra == nullptr) {
continue; continue;

View File

@ -6,6 +6,7 @@
#include <AP_HAL/AP_HAL.h> #include <AP_HAL/AP_HAL.h>
#include "AP_OABendyRuler.h" #include "AP_OABendyRuler.h"
#include "AP_OADijkstra.h" #include "AP_OADijkstra.h"
#include "AP_OADatabase.h"
/* /*
* This class provides path planning around fence, stay-out zones and moving obstacles * This class provides path planning around fence, stay-out zones and moving obstacles
@ -59,6 +60,7 @@ private:
// avoidance thread that continually updates the avoidance_result structure based on avoidance_request // avoidance thread that continually updates the avoidance_result structure based on avoidance_request
void avoidance_thread(); void avoidance_thread();
bool start_thread();
// an avoidance request from the navigation code // an avoidance request from the navigation code
struct avoidance_info { struct avoidance_info {
@ -88,7 +90,11 @@ private:
bool _thread_created; // true once background thread has been created bool _thread_created; // true once background thread has been created
AP_OABendyRuler *_oabendyruler; // Bendy Ruler algorithm AP_OABendyRuler *_oabendyruler; // Bendy Ruler algorithm
AP_OADijkstra *_oadijkstra; // Dijkstra's algorithm AP_OADijkstra *_oadijkstra; // Dijkstra's algorithm
AP_OADatabase _oadatabase; // Database of dynamic objects to avoid
uint32_t _logged_time_ms; // result_time_ms of last result logged (triggers logging of new results) uint32_t _logged_time_ms; // result_time_ms of last result logged (triggers logging of new results)
#if !HAL_MINIMIZE_FEATURES
uint32_t avoidance_latest_ms; // last time Dijkstra's or BendyRuler algorithms ran
#endif
static AP_OAPathPlanner *_singleton; static AP_OAPathPlanner *_singleton;
}; };