mirror of https://github.com/ArduPilot/ardupilot
SITL: update conventional heli dynamics and add blade 360 heli dynamics
This commit is contained in:
parent
35a93c5988
commit
9a917abf76
|
@ -27,28 +27,40 @@ Helicopter::Helicopter(const char *frame_str) :
|
|||
{
|
||||
mass = 4.54f;
|
||||
|
||||
if (strstr(frame_str, "-dual")) {
|
||||
frame_type = HELI_FRAME_DUAL;
|
||||
_time_delay = 30;
|
||||
nominal_rpm = 1300;
|
||||
} else if (strstr(frame_str, "-compound")) {
|
||||
frame_type = HELI_FRAME_COMPOUND;
|
||||
_time_delay = 50;
|
||||
nominal_rpm = 1500;
|
||||
} else if (strstr(frame_str, "-blade360")) {
|
||||
frame_type = HELI_FRAME_BLADE;
|
||||
_time_delay = 40;
|
||||
nominal_rpm = 2100;
|
||||
} else {
|
||||
frame_type = HELI_FRAME_CONVENTIONAL;
|
||||
_time_delay = 50;
|
||||
nominal_rpm = 1500;
|
||||
}
|
||||
|
||||
/*
|
||||
For conventional and compound
|
||||
scaling from motor power to Newtons. Allows the copter
|
||||
to hover against gravity when the motor is at hover_throttle
|
||||
normalized to hover at 1500RPM at 5 deg collective.
|
||||
*/
|
||||
thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(157.0f));
|
||||
thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f));
|
||||
|
||||
// calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover
|
||||
torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(157.0f));
|
||||
torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f));
|
||||
|
||||
// torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters.
|
||||
torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(157.0f);
|
||||
torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(nominal_rpm * 2.0f * M_PI / 60.0f);
|
||||
|
||||
frame_height = 0.1;
|
||||
|
||||
if (strstr(frame_str, "-dual")) {
|
||||
frame_type = HELI_FRAME_DUAL;
|
||||
} else if (strstr(frame_str, "-compound")) {
|
||||
frame_type = HELI_FRAME_COMPOUND;
|
||||
} else {
|
||||
frame_type = HELI_FRAME_CONVENTIONAL;
|
||||
}
|
||||
gas_heli = (strstr(frame_str, "-gas") != nullptr);
|
||||
|
||||
ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT;
|
||||
|
@ -110,8 +122,8 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
case HELI_FRAME_CONVENTIONAL: {
|
||||
// simulate a traditional helicopter
|
||||
|
||||
float Ma1s = 522.0f;
|
||||
float Lb1s = 922.0f;
|
||||
float Ma1s = 617.5f;
|
||||
float Lb1s = 3588.6f;
|
||||
float Mu = 0.003f;
|
||||
float Lv = -0.006;
|
||||
float Xu = -0.125;
|
||||
|
@ -131,13 +143,13 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = (swash1 - swash2) / cyclic_scalar;
|
||||
float pitch_cyclic = ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
||||
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
||||
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt);
|
||||
|
||||
float yaw_cmd = 2.0f * tail_rotor - 1.0f; // convert range to -1 to 1
|
||||
float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
||||
float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0]/nominal_rpm);
|
||||
float tail_rotor_thrust = -1.0f * tail_rotor_torque * izz / tr_dist; //right pedal produces left body accel
|
||||
|
||||
// rotational acceleration, in rad/s/s, in body frame
|
||||
|
@ -152,6 +164,57 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
break;
|
||||
}
|
||||
|
||||
case HELI_FRAME_BLADE: {
|
||||
// simulate a Blade 360 helicopter. This model was taken from the following reference.
|
||||
// Walker, J, Tishler, M, "Identification and Control Design of a Sub-Scale Flybarless Helicopter",
|
||||
// Vertical Flight Society’s 77th Annual Forum & Technology Display, Virtual, May 10-14, 2021.
|
||||
|
||||
float Ma1s = 796.7f;
|
||||
float Lb1s = 5115.2f;
|
||||
float Mu = 2.7501f;
|
||||
float Mv = -2.3039f;
|
||||
float Lu = -28.7796f;
|
||||
float Lv = -5.5376f;
|
||||
float Xu = -0.2270f;
|
||||
float Yv = -0.1852f;
|
||||
float Yp = 0.2303f;
|
||||
float Zw = -0.5910f;
|
||||
float Nr = -2.0131f;
|
||||
float Nw = 5.7574f;
|
||||
float Nv = 1.7258f;
|
||||
float Ncol = -32.4616f;
|
||||
float Nped = 63.0040f;
|
||||
float Zcol = -22.3239f;
|
||||
|
||||
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
||||
|
||||
// determine RPM
|
||||
rpm[0] = update_rpm(motor_interlock, dt);
|
||||
|
||||
// collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust
|
||||
float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f);
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = 1.283f * (swash1 - swash2);
|
||||
float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3);
|
||||
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
||||
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt);
|
||||
|
||||
float yaw_cmd = 1.45f * (2.0f * tail_rotor - 1.0f); // convert range to -1 to 1
|
||||
|
||||
// rotational acceleration, in rad/s/s, in body frame
|
||||
rot_accel.x = _tpp_angle.x * Lb1s + Lu * velocity_air_bf.x + Lv * velocity_air_bf.y;
|
||||
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x + Mv * velocity_air_bf.y;
|
||||
rot_accel.z = Nv * velocity_air_bf.y + Nr * gyro.z + sq(rpm[0]/nominal_rpm) * Nped * yaw_cmd + Nw * velocity_air_bf.z + sq(rpm[0]/nominal_rpm) * Ncol * (coll - 0.5f);
|
||||
|
||||
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y + Yp * gyro.x - 3.2 * 0.01745 * GRAVITY_MSS;
|
||||
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
||||
float vertical_thrust = Zcol * coll * sq(rpm[0]/nominal_rpm) + velocity_air_bf.z * Zw;
|
||||
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, vertical_thrust);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case HELI_FRAME_DUAL: {
|
||||
// simulate a tandem helicopter
|
||||
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
||||
|
@ -188,7 +251,7 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity);
|
||||
|
||||
// simulate rotor speed
|
||||
rpm[0] = thrust * 1300;
|
||||
rpm[0] = thrust * nominal_rpm;
|
||||
|
||||
// scale thrust to newtons
|
||||
thrust *= thrust_scale;
|
||||
|
@ -202,8 +265,8 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
case HELI_FRAME_COMPOUND: {
|
||||
// simulate a compound helicopter
|
||||
|
||||
float Ma1s = 522.0f;
|
||||
float Lb1s = 922.0f;
|
||||
float Ma1s = 617.5f;
|
||||
float Lb1s = 3588.6f;
|
||||
float Mu = 0.003f;
|
||||
float Lv = -0.006;
|
||||
float Xu = -0.125;
|
||||
|
@ -221,8 +284,8 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = (swash1 - swash2) / cyclic_scalar;
|
||||
float pitch_cyclic = ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
||||
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
||||
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt);
|
||||
|
||||
|
@ -232,8 +295,8 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
float left_thruster_cmd = 2.0f * (_servos_delayed[4]-1000) / 1000.0f - 1.0f;
|
||||
|
||||
// assume torque from each thruster only half of normal tailrotor since thrusters 1/2 distance from cg
|
||||
float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
||||
float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
||||
float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm);
|
||||
float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm);
|
||||
|
||||
float right_thruster_force = -1.0f * right_thruster_torque * izz / (0.5f * tr_dist);
|
||||
float left_thruster_force = left_thruster_torque * izz / (0.5f * tr_dist);
|
||||
|
@ -265,13 +328,31 @@ void Helicopter::update(const struct sitl_input &input)
|
|||
void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt)
|
||||
{
|
||||
|
||||
float tf_inv = 1.0f / 0.07135f;
|
||||
float Lfa1s = 0.83641f;
|
||||
float Mfb1s = -0.89074f;
|
||||
float Lflt = 1.7869f;
|
||||
float Lflg = -0.39394f;
|
||||
float Mflt = 0.46231f;
|
||||
float Mflg = 2.4099f;
|
||||
float tf_inv;
|
||||
float Lfa1s;
|
||||
float Mfb1s;
|
||||
float Lflt;
|
||||
float Lflg;
|
||||
float Mflt;
|
||||
float Mflg;
|
||||
|
||||
if (frame_type == HELI_FRAME_BLADE) {
|
||||
tf_inv = 1.0f / 0.0353f;
|
||||
Lfa1s = 1.0477f;
|
||||
Mfb1s = -1.0057f;
|
||||
Lflt = 0.2375f;
|
||||
Lflg = -0.0286f;
|
||||
Mflt = 0.0344f;
|
||||
Mflg = 0.2292f;
|
||||
} else {
|
||||
tf_inv = 1.0f / 0.068232f;
|
||||
Lfa1s = 1.2963f;
|
||||
Mfb1s = -1.3402f;
|
||||
Lflt = 1.7635f;
|
||||
Lflg = -0.61171f;
|
||||
Mflt = 0.52454f;
|
||||
Mflg = 1.9432f;
|
||||
}
|
||||
|
||||
float b1s_dot = -1 * gyro.x - tf_inv * tpp_angle.x + tf_inv * (Lfa1s * tpp_angle.y + Lflt * ctrl_pos.x + Lflg * ctrl_pos.y);
|
||||
float a1s_dot = -1 * gyro.y - tf_inv * tpp_angle.y + tf_inv * (Mfb1s * tpp_angle.x + Mflt * ctrl_pos.x + Mflg * ctrl_pos.y);
|
||||
|
@ -301,7 +382,7 @@ float Helicopter::update_rpm(bool interlock, float dt)
|
|||
}
|
||||
}
|
||||
|
||||
return 1500.0f * constrain_float(rotor_runup_output,0.0f,1.0f);
|
||||
return nominal_rpm * constrain_float(rotor_runup_output,0.0f,1.0f);
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -79,13 +79,15 @@ private:
|
|||
float torque_mpog;
|
||||
float hover_coll = 5.0f;
|
||||
bool motor_interlock;
|
||||
uint8_t _time_delay = 30;
|
||||
uint8_t _time_delay;
|
||||
enum frame_types {
|
||||
HELI_FRAME_CONVENTIONAL,
|
||||
HELI_FRAME_DUAL,
|
||||
HELI_FRAME_COMPOUND
|
||||
HELI_FRAME_COMPOUND,
|
||||
HELI_FRAME_BLADE
|
||||
} frame_type = HELI_FRAME_CONVENTIONAL;
|
||||
bool gas_heli = false;
|
||||
float nominal_rpm;
|
||||
};
|
||||
|
||||
} // namespace SITL
|
||||
|
|
Loading…
Reference in New Issue