AP_InertialSensor: added support for v3 Invensense sensors

starting with ICM-40609, ICM-42688 and ICM-42605
This commit is contained in:
Andrew Tridgell 2021-01-07 14:34:38 +11:00
parent faae0a8609
commit 957842f7eb
4 changed files with 461 additions and 0 deletions

View File

@ -26,6 +26,7 @@
#include "AP_InertialSensor_Invensensev2.h"
#include "AP_InertialSensor_ADIS1647x.h"
#include "AP_InertialSensor_ExternalAHRS.h"
#include "AP_InertialSensor_Invensensev3.h"
/* Define INS_TIMING_DEBUG to track down scheduling issues with the main loop.
* Output is on the debug console. */

View File

@ -118,6 +118,9 @@ public:
DEVTYPE_INS_ICM20601 = 0x30,
DEVTYPE_INS_ADIS1647X = 0x31,
DEVTYPE_SERIAL = 0x32,
DEVTYPE_INS_ICM40609 = 0x33,
DEVTYPE_INS_ICM42688 = 0x34,
DEVTYPE_INS_ICM42605 = 0x35,
};
protected:

View File

@ -0,0 +1,373 @@
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
driver for Invensensev3 IMUs
Supported:
ICM-40609
ICM-42688
ICM-42605
Note that this sensor includes 32kHz internal sampling and an
anti-aliasing filter, which means this driver can be a lot simpler
than the Invensense and Invensensev2 drivers which need to handle
8kHz sample rates to achieve decent aliasing protection
The sensor is a multi-bank design (4 banks) but as this driver only
needs access to the first bank and the default bank is the first
bank we can treat it as a single bank design
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor_Invensensev3.h"
#include <utility>
extern const AP_HAL::HAL& hal;
/*
gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==0)
*/
static const float GYRO_SCALE = (0.0174532f / 16.4f);
// set bit 0x80 in register ID for read on SPI
#define BIT_READ_FLAG 0x80
// registers we use
#define INV3REG_WHOAMI 0x75
#define INV3REG_INT_CONFIG 0x14
#define INV3REG_FIFO_CONFIG 0x16
#define INV3REG_PWR_MGMT0 0x4e
#define INV3REG_GYRO_CONFIG0 0x4f
#define INV3REG_ACCEL_CONFIG0 0x50
#define INV3REG_FIFO_CONFIG1 0x5f
#define INV3REG_FIFO_CONFIG2 0x60
#define INV3REG_FIFO_CONFIG3 0x61
#define INV3REG_INT_SOURCE0 0x65
#define INV3REG_SIGNAL_PATH_RESET 0x4b
#define INV3REG_INTF_CONFIG0 0x4c
#define INV3REG_FIFO_COUNTH 0x2e
#define INV3REG_FIFO_DATA 0x30
#define INV3REG_BANK_SEL 0x76
// WHOAMI values
#define INV3_ID_ICM40609 0x3b
#define INV3_ID_ICM42605 0x42
#define INV3_ID_ICM42688 0x47
// run output data at 2kHz
#define INV3_ODR 2000
/*
really nice that this sensor has an option to request little-endian
data
*/
struct PACKED FIFOData {
uint8_t header;
int16_t accel[3];
int16_t gyro[3];
int8_t temperature;
uint16_t timestamp;
};
#define INV3_SAMPLE_SIZE sizeof(FIFOData)
#define INV3_FIFO_BUFFER_LEN 8
AP_InertialSensor_Invensensev3::AP_InertialSensor_Invensensev3(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev,
enum Rotation _rotation)
: AP_InertialSensor_Backend(imu)
, rotation(_rotation)
, dev(std::move(_dev))
{
}
AP_InertialSensor_Invensensev3::~AP_InertialSensor_Invensensev3()
{
if (fifo_buffer != nullptr) {
hal.util->free_type((void*)fifo_buffer, INV3_FIFO_BUFFER_LEN * INV3_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
}
}
AP_InertialSensor_Backend *AP_InertialSensor_Invensensev3::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev,
enum Rotation _rotation)
{
if (!_dev) {
return nullptr;
}
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
_dev->set_read_flag(BIT_READ_FLAG);
}
AP_InertialSensor_Invensensev3 *sensor =
new AP_InertialSensor_Invensensev3(imu, std::move(_dev), _rotation);
if (!sensor || !sensor->hardware_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_Invensensev3::fifo_reset()
{
// FIFO_MODE stop-on-full
register_write(INV3REG_FIFO_CONFIG, 0x80);
// FIFO partial disable, enable accel, gyro, temperature
register_write(INV3REG_FIFO_CONFIG1, 0x07);
// little-endian, fifo count in records, last data hold for ODR mismatch
register_write(INV3REG_INTF_CONFIG0, 0xC0);
register_write(INV3REG_SIGNAL_PATH_RESET, 2);
notify_accel_fifo_reset(accel_instance);
notify_gyro_fifo_reset(gyro_instance);
}
void AP_InertialSensor_Invensensev3::start()
{
WITH_SEMAPHORE(dev->get_semaphore());
// initially run the bus at low speed
dev->set_speed(AP_HAL::Device::SPEED_LOW);
// always use FIFO
fifo_reset();
// grab the used instances
enum DevTypes devtype;
switch (inv3_type) {
case Invensensev3_Type::ICM42688:
devtype = DEVTYPE_INS_ICM42688;
break;
case Invensensev3_Type::ICM42605:
devtype = DEVTYPE_INS_ICM42605;
break;
case Invensensev3_Type::ICM40609:
default:
devtype = DEVTYPE_INS_ICM40609;
break;
}
gyro_instance = _imu.register_gyro(INV3_ODR, dev->get_bus_id_devtype(devtype));
accel_instance = _imu.register_accel(INV3_ODR, dev->get_bus_id_devtype(devtype));
// setup on-sensor filtering and scaling
set_filter_and_scaling();
// update backend sample rate
_set_accel_raw_sample_rate(accel_instance, INV3_ODR);
_set_gyro_raw_sample_rate(gyro_instance, INV3_ODR);
// indicate what multiplier is appropriate for the sensors'
// readings to fit them into an int16_t:
_set_raw_sample_accel_multiplier(accel_instance, multiplier_accel);
// now that we have initialised, we set the bus speed to high
dev->set_speed(AP_HAL::Device::SPEED_HIGH);
// setup sensor rotations from probe()
set_gyro_orientation(gyro_instance, rotation);
set_accel_orientation(accel_instance, rotation);
// allocate fifo buffer
fifo_buffer = (FIFOData *)hal.util->malloc_type(INV3_FIFO_BUFFER_LEN * INV3_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
if (fifo_buffer == nullptr) {
AP_HAL::panic("Invensensev3: Unable to allocate FIFO buffer");
}
// start the timer process to read samples
dev->register_periodic_callback(1e6 / INV3_ODR, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Invensensev3::read_fifo, void));
}
/*
publish any pending data
*/
bool AP_InertialSensor_Invensensev3::update()
{
update_accel(accel_instance);
update_gyro(gyro_instance);
_publish_temperature(accel_instance, temp_filtered);
return true;
}
/*
accumulate new samples
*/
void AP_InertialSensor_Invensensev3::accumulate()
{
// nothing to do
}
bool AP_InertialSensor_Invensensev3::accumulate_samples(const FIFOData *data, uint8_t n_samples)
{
for (uint8_t i = 0; i < n_samples; i++) {
const FIFOData &d = data[i];
// we have a header to confirm we don't have FIFO corruption! no more mucking
// about with the temperature registers
if ((d.header & 0xF8) != 0x68) {
// no or bad data
return false;
}
Vector3f accel{float(d.accel[0]), float(d.accel[1]), float(d.accel[2])};
Vector3f gyro{float(d.gyro[0]), float(d.gyro[1]), float(d.gyro[2])};
accel *= accel_scale;
gyro *= GYRO_SCALE;
const float temp = d.temperature * temp_sensitivity + temp_zero;
_rotate_and_correct_accel(accel_instance, accel);
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_accel_raw_sample(accel_instance, accel, 0);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
temp_filtered = temp_filter.apply(temp);
}
return true;
}
/*
timer function called at ODR rate
*/
void AP_InertialSensor_Invensensev3::read_fifo()
{
bool need_reset = false;
uint16_t n_samples;
if (!block_read(INV3REG_FIFO_COUNTH, (uint8_t*)&n_samples, 2)) {
goto check_registers;
}
if (n_samples == 0) {
/* Not enough data in FIFO */
goto check_registers;
}
while (n_samples > 0) {
uint8_t n = MIN(n_samples, INV3_FIFO_BUFFER_LEN);
if (!block_read(INV3REG_FIFO_DATA, (uint8_t*)fifo_buffer, n * INV3_SAMPLE_SIZE)) {
goto check_registers;
}
if (!accumulate_samples(fifo_buffer, n)) {
need_reset = true;
break;
}
n_samples -= n;
}
if (need_reset) {
fifo_reset();
}
check_registers:
// check next register value for correctness
dev->set_speed(AP_HAL::Device::SPEED_LOW);
if (!dev->check_next_register()) {
_inc_gyro_error_count(gyro_instance);
_inc_accel_error_count(accel_instance);
}
dev->set_speed(AP_HAL::Device::SPEED_HIGH);
}
bool AP_InertialSensor_Invensensev3::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
return dev->read_registers(reg, buf, size);
}
uint8_t AP_InertialSensor_Invensensev3::register_read(uint8_t reg)
{
uint8_t val = 0;
dev->read_registers(reg, &val, 1);
return val;
}
void AP_InertialSensor_Invensensev3::register_write(uint8_t reg, uint8_t val, bool checked)
{
dev->write_register(reg, val, checked);
}
/*
set the filter frequencies and scaling
*/
void AP_InertialSensor_Invensensev3::set_filter_and_scaling(void)
{
// enable gyro and accel in low-noise modes
register_write(INV3REG_PWR_MGMT0, 0x0F);
hal.scheduler->delay_microseconds(300);
// setup gyro for 2kHz
register_write(INV3REG_GYRO_CONFIG0, 0x05);
// setup accel for 2kHz
register_write(INV3REG_ACCEL_CONFIG0, 0x05);
}
/*
check whoami for sensor type
*/
bool AP_InertialSensor_Invensensev3::check_whoami(void)
{
uint8_t whoami = register_read(INV3REG_WHOAMI);
switch (whoami) {
case INV3_ID_ICM40609:
inv3_type = Invensensev3_Type::ICM40609;
accel_scale = (GRAVITY_MSS / 1024);
return true;
case INV3_ID_ICM42688:
inv3_type = Invensensev3_Type::ICM42688;
accel_scale = (GRAVITY_MSS / 2048);
return true;
case INV3_ID_ICM42605:
inv3_type = Invensensev3_Type::ICM42605;
accel_scale = (GRAVITY_MSS / 2048);
return true;
}
// not a value WHOAMI result
return false;
}
bool AP_InertialSensor_Invensensev3::hardware_init(void)
{
WITH_SEMAPHORE(dev->get_semaphore());
dev->setup_checked_registers(7, dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C?200:20);
// initially run the bus at low speed
dev->set_speed(AP_HAL::Device::SPEED_LOW);
if (!check_whoami()) {
return false;
}
dev->set_speed(AP_HAL::Device::SPEED_HIGH);
switch (inv3_type) {
case Invensensev3_Type::ICM40609:
_clip_limit = 29.5f * GRAVITY_MSS;
break;
case Invensensev3_Type::ICM42688:
case Invensensev3_Type::ICM42605:
_clip_limit = 15.5f * GRAVITY_MSS;
break;
}
return true;
}

View File

@ -0,0 +1,84 @@
#pragma once
/*
driver for the invensensev3 range of IMUs
These are the ICM-4 series of IMUs
*/
#include <stdint.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/OwnPtr.h>
#include <AP_Math/AP_Math.h>
#include <Filter/LowPassFilter2p.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
class AP_InertialSensor_Invensensev3 : public AP_InertialSensor_Backend
{
public:
virtual ~AP_InertialSensor_Invensensev3();
static AP_InertialSensor_Backend *probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum Rotation rotation);
/* update accel and gyro state */
bool update() override;
void accumulate() override;
void start() override;
enum class Invensensev3_Type : uint8_t {
ICM40609 = 0,
ICM42688,
ICM42605,
};
// acclerometers on Invensense sensors will return values up to 32G
const uint16_t multiplier_accel = INT16_MAX/(32*GRAVITY_MSS);
private:
AP_InertialSensor_Invensensev3(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum Rotation rotation);
/* Initialize sensor*/
bool hardware_init();
bool check_whoami();
void set_filter_and_scaling(void);
void fifo_reset();
/* Read samples from FIFO */
void read_fifo();
bool block_read(uint8_t reg, uint8_t *buf, uint32_t size);
uint8_t register_read(uint8_t reg);
void register_write(uint8_t reg, uint8_t val, bool checked=false);
bool accumulate_samples(const struct FIFOData *data, uint8_t n_samples);
// instance numbers of accel and gyro data
uint8_t gyro_instance;
uint8_t accel_instance;
// temp scaling for FIFO temperature
const float temp_sensitivity = 1.0f/2.07;
const float temp_zero = 25; // degC
const enum Rotation rotation;
float accel_scale;
AP_HAL::OwnPtr<AP_HAL::Device> dev;
// which sensor type this is
enum Invensensev3_Type inv3_type;
// buffer for fifo read
struct FIFOData *fifo_buffer;
float temp_filtered;
LowPassFilter2pFloat temp_filter;
};