mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-23 09:08:30 -04:00
AC_AttitudeControl: PosControl fixes
This commit is contained in:
parent
c4bb8baf0c
commit
92e05e8c4f
File diff suppressed because it is too large
Load Diff
@ -17,9 +17,7 @@
|
||||
|
||||
|
||||
// position controller default definitions
|
||||
#define POSCONTROL_ACCELERATION_MIN 50.0f // minimum horizontal acceleration in cm/s/s - used for sanity checking acceleration in leash length calculation
|
||||
#define POSCONTROL_ACCEL_XY 100.0f // default horizontal acceleration in cm/s/s. This is overwritten by waypoint and loiter controllers
|
||||
#define POSCONTROL_ACCEL_XY_MAX (GRAVITY_MSS*100) // max horizontal acceleration in cm/s/s that the position velocity controller will ask from the lower accel controller
|
||||
#define POSCONTROL_STOPPING_DIST_UP_MAX 300.0f // max stopping distance (in cm) vertically while climbing
|
||||
#define POSCONTROL_STOPPING_DIST_DOWN_MAX 200.0f // max stopping distance (in cm) vertically while descending
|
||||
|
||||
@ -29,245 +27,253 @@
|
||||
|
||||
#define POSCONTROL_ACCEL_Z 250.0f // default vertical acceleration in cm/s/s.
|
||||
|
||||
#define POSCONTROL_LEASH_LENGTH_MIN 100.0f // minimum leash lengths in cm
|
||||
#define POSCONTROL_VEL_ERROR_CUTOFF_FREQ 4.0f // low-pass filter on velocity error (unit: Hz)
|
||||
#define POSCONTROL_THROTTLE_CUTOFF_FREQ 2.0f // low-pass filter on acceleration error (unit: Hz)
|
||||
|
||||
#define POSCONTROL_DT_50HZ 0.02f // time difference in seconds for 50hz update rate
|
||||
#define POSCONTROL_DT_400HZ 0.0025f // time difference in seconds for 400hz update rate
|
||||
|
||||
#define POSCONTROL_ACTIVE_TIMEOUT_US 200000 // position controller is considered active if it has been called within the past 0.2 seconds
|
||||
|
||||
#define POSCONTROL_VEL_ERROR_CUTOFF_FREQ 4.0f // low-pass filter on velocity error (unit: hz)
|
||||
#define POSCONTROL_THROTTLE_CUTOFF_FREQ 2.0f // low-pass filter on accel error (unit: hz)
|
||||
#define POSCONTROL_ACCEL_FILTER_HZ 2.0f // low-pass filter on acceleration (unit: hz)
|
||||
#define POSCONTROL_JERK_RATIO 1.0f // Defines the time it takes to reach the requested acceleration
|
||||
#define POSCONTROL_DEFAULT_SHAPER_TC 0.25f // default time constant of the kinimatic path generation in seconds
|
||||
|
||||
#define POSCONTROL_OVERSPEED_GAIN_Z 2.0f // gain controlling rate at which z-axis speed is brought back within SPEED_UP and SPEED_DOWN range
|
||||
|
||||
#define POSCONTROL_RELAX_TC 0.16f // This is used to decay the relevant variable to 5% in half a second.
|
||||
|
||||
class AC_PosControl
|
||||
{
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
AC_PosControl(AP_AHRS_View& ahrs, const AP_InertialNav& inav,
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control);
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control, float dt);
|
||||
|
||||
///
|
||||
/// initialisation functions
|
||||
///
|
||||
|
||||
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
|
||||
/// updates z axis accel controller's D term filter
|
||||
void set_dt(float delta_sec);
|
||||
/// get_dt - gets time delta in seconds for all position controllers
|
||||
float get_dt() const { return _dt; }
|
||||
|
||||
///
|
||||
/// z position controller
|
||||
///
|
||||
|
||||
/// set_max_speed_z - sets maximum climb and descent rates
|
||||
/// speed_down can be positive or negative but will always be interpreted as a descent speed
|
||||
/// leash length will be recalculated
|
||||
void set_max_speed_z(float speed_down, float speed_up);
|
||||
|
||||
/// get_max_speed_up - accessor for current maximum up speed in cm/s
|
||||
float get_max_speed_up() const { return _speed_up_cms; }
|
||||
|
||||
/// get_max_speed_down - accessors for current maximum down speed in cm/s. Will be a negative number
|
||||
float get_max_speed_down() const { return _speed_down_cms; }
|
||||
|
||||
/// get_vel_target_z - returns current vertical speed in cm/s
|
||||
float get_vel_target_z() const { return _vel_target.z; }
|
||||
|
||||
/// set_max_accel_z - set the maximum vertical acceleration in cm/s/s
|
||||
/// leash length will be recalculated
|
||||
void set_max_accel_z(float accel_cmss);
|
||||
|
||||
/// get_max_accel_z - returns current maximum vertical acceleration in cm/s/s
|
||||
float get_max_accel_z() const { return _accel_z_cms; }
|
||||
|
||||
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
|
||||
/// called by update_z_controller if z-axis speed or accelerations are changed
|
||||
void calc_leash_length_z();
|
||||
|
||||
/// set_alt_target - set altitude target in cm above home
|
||||
void set_alt_target(float alt_cm) { _pos_target.z = alt_cm; }
|
||||
|
||||
/// set_alt_target_with_slew - adjusts target towards a final altitude target
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
void set_alt_target_with_slew(float alt_cm, float dt);
|
||||
|
||||
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
||||
virtual void set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend);
|
||||
|
||||
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
||||
virtual void set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend);
|
||||
|
||||
/// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// almost no checks are performed on the input
|
||||
void add_takeoff_climb_rate(float climb_rate_cms, float dt);
|
||||
|
||||
/// set_alt_target_to_current_alt - set altitude target to current altitude
|
||||
void set_alt_target_to_current_alt() { _pos_target.z = _inav.get_altitude(); }
|
||||
|
||||
/// shift altitude target (positive means move altitude up)
|
||||
void shift_alt_target(float z_cm);
|
||||
|
||||
/// relax_alt_hold_controllers - set all desired and targets to measured
|
||||
void relax_alt_hold_controllers(float throttle_setting);
|
||||
|
||||
/// get_alt_target - get desired altitude (in cm above home) from loiter or wp controller which should be fed into throttle controller
|
||||
float get_alt_target() const { return _pos_target.z; }
|
||||
|
||||
/// get_alt_error - returns altitude error in cm
|
||||
float get_alt_error() const;
|
||||
|
||||
/// get_vel_z_error_ratio - returns the proportion of error relative to the maximum request
|
||||
float get_vel_z_control_ratio() const { return constrain_float(_vel_z_control_ratio, 0.0f, 1.0f); }
|
||||
|
||||
/// set_target_to_stopping_point_z - sets altitude target to reasonable stopping altitude in cm above home
|
||||
void set_target_to_stopping_point_z();
|
||||
|
||||
/// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration
|
||||
void get_stopping_point_z(Vector3f& stopping_point) const;
|
||||
|
||||
/// init_takeoff - initialises target altitude if we are taking off
|
||||
void init_takeoff();
|
||||
|
||||
// is_active - returns true if the z-axis position controller has been run very recently
|
||||
bool is_active_z() const;
|
||||
|
||||
/// update_z_controller - fly to altitude in cm above home
|
||||
void update_z_controller();
|
||||
|
||||
// get_leash_down_z, get_leash_up_z - returns vertical leash lengths in cm
|
||||
float get_leash_down_z() const { return _leash_down_z; }
|
||||
float get_leash_up_z() const { return _leash_up_z; }
|
||||
|
||||
///
|
||||
/// xy position controller
|
||||
/// 3D position shaper
|
||||
///
|
||||
|
||||
/// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request
|
||||
float get_lean_angle_max_cd() const;
|
||||
/// input_vel_accel_xyz calculate a jerk limited path from the current position, velocity and acceleration to an input position velocity and acceleration.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by the maximum acceleration and time constant set using the function set_max_speed_accel_xy and time constant.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void input_pos_vel_accel_xyz(Vector3f& pos);
|
||||
|
||||
/// init_xy_controller - initialise the xy controller
|
||||
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles
|
||||
/// should be called once whenever significant changes to the position target are made
|
||||
/// this does not update the xy target
|
||||
///
|
||||
/// Lateral position controller
|
||||
///
|
||||
|
||||
/// set_max_speed_accel_xy - set the maximum horizontal speed in cm/s and acceleration in cm/s/s
|
||||
/// If set accel_limit_cmss limits the maximum correction from the position controller to be less than the maximum lean angle
|
||||
void set_max_speed_accel_xy(float speed_cms, float accel_cmss, float accel_limit_cmss = 0.0f);
|
||||
|
||||
void set_shaper_tc_xy(float tc_xy_s) {_tc_xy_s = MAX(_tc_xy_s, tc_xy_s);}
|
||||
|
||||
/// get_max_speed_xy_cms - get the maximum horizontal speed in cm/s
|
||||
float get_max_speed_xy_cms() const { return _vel_max_xy_cms; }
|
||||
|
||||
/// get_max_accel_xy_cmss - get the maximum horizontal acceleration in cm/s/s
|
||||
float get_max_accel_xy_cmss() const { return _accel_max_xy_cmss; }
|
||||
|
||||
// set the maximum horizontal position error that will be allowed in the horizontal plane
|
||||
void set_pos_error_max_xy_cm(float error_max) { _p_pos_xy.set_error_max(error_max); }
|
||||
float get_pos_error_max_xy_cm() { return _p_pos_xy.get_error_max(); }
|
||||
|
||||
/// init_xy_controller - initialise the position controller to the current position, velocity, acceleration and attitude.
|
||||
/// This function is the default initialisation for any position control that provides position, velocity and acceleration.
|
||||
void init_xy_controller();
|
||||
|
||||
/// standby_xyz_reset - resets I terms and removes position error
|
||||
/// This function will let Loiter and Alt Hold continue to operate
|
||||
/// in the event that the flight controller is in control of the
|
||||
/// aircraft when in standby.
|
||||
void standby_xyz_reset();
|
||||
/// init_xy_controller_stopping_point - initialise the position controller to the stopping point with zero velocity and acceleration.
|
||||
/// This function should be used when the expected kinimatic path assumes a stationary initial condition but does not specify a specific starting position.
|
||||
/// The starting position can be retrieved by getting the position target using get_pos_target_cm() after calling this function.
|
||||
void init_xy_controller_stopping_point();
|
||||
|
||||
/// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s
|
||||
/// leash length will be recalculated
|
||||
void set_max_accel_xy(float accel_cmss);
|
||||
float get_max_accel_xy() const { return _accel_cms; }
|
||||
|
||||
/// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s
|
||||
/// leash length will be recalculated
|
||||
void set_max_speed_xy(float speed_cms);
|
||||
float get_max_speed_xy() const { return _speed_cms; }
|
||||
|
||||
/// set_limit_accel_xy - mark that accel has been limited
|
||||
/// this prevents integrator buildup
|
||||
void set_limit_accel_xy(void) { _limit.accel_xy = true; }
|
||||
|
||||
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
|
||||
/// should be called whenever the speed, acceleration or position kP is modified
|
||||
void calc_leash_length_xy();
|
||||
|
||||
/// set the horizontal leash length
|
||||
void set_leash_length_xy(float leash) { _leash = leash; _flags.recalc_leash_xy = false; }
|
||||
|
||||
/// get_pos_target - get target as position vector (from home in cm)
|
||||
const Vector3f& get_pos_target() const { return _pos_target; }
|
||||
|
||||
/// set_pos_target in cm from home
|
||||
void set_pos_target(const Vector3f& position);
|
||||
|
||||
/// set position, velocity and acceleration targets
|
||||
void set_pos_vel_accel_target(const Vector3f& pos, const Vector3f& vel, const Vector3f& accel);
|
||||
|
||||
/// set_xy_target in cm from home
|
||||
void set_xy_target(float x, float y);
|
||||
|
||||
/// shift position target target in x, y axis
|
||||
void shift_pos_xy_target(float x_cm, float y_cm);
|
||||
|
||||
/// get_desired_velocity - returns xy desired velocity (i.e. feed forward) in cm/s in lat and lon direction
|
||||
const Vector3f& get_desired_velocity() { return _vel_desired; }
|
||||
|
||||
/// set_desired_velocity_z - sets desired velocity in cm/s in z axis
|
||||
void set_desired_velocity_z(float vel_z_cms) {_vel_desired.z = vel_z_cms;}
|
||||
|
||||
// set desired acceleration in cm/s in xy axis
|
||||
void set_desired_accel_xy(float accel_lat_cms, float accel_lon_cms) { _accel_desired.x = accel_lat_cms; _accel_desired.y = accel_lon_cms; }
|
||||
|
||||
/// set_desired_velocity_xy - sets desired velocity in cm/s in lat and lon directions
|
||||
/// when update_xy_controller is next called the position target is moved based on the desired velocity and
|
||||
/// the desired velocities are fed forward into the rate_to_accel step
|
||||
void set_desired_velocity_xy(float vel_lat_cms, float vel_lon_cms) {_vel_desired.x = vel_lat_cms; _vel_desired.y = vel_lon_cms; }
|
||||
|
||||
/// set_desired_velocity - sets desired velocity in cm/s in all 3 axis
|
||||
/// when update_vel_controller_xyz is next called the position target is moved based on the desired velocity
|
||||
void set_desired_velocity(const Vector3f &des_vel) { _vel_desired = des_vel; }
|
||||
|
||||
// overrides the velocity process variable for one timestep
|
||||
void override_vehicle_velocity_xy(const Vector2f& vel_xy) { _vehicle_horiz_vel = vel_xy; _flags.vehicle_horiz_vel_override = true; }
|
||||
|
||||
// relax velocity controller by clearing velocity error and setting velocity target to current velocity
|
||||
// relax_velocity_controller_xy - initialise the position controller to the current position and velocity with decaying acceleration.
|
||||
/// This function decays the output acceleration by 95% every half second to achieve a smooth transition to zero requested acceleration.
|
||||
void relax_velocity_controller_xy();
|
||||
|
||||
// is_active_xy - returns true if the xy position controller has been run very recently
|
||||
/// input_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input velocity and acceleration.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by the maximum acceleration and time constant set using the function set_max_speed_accel_xy and time constant.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void input_vel_accel_xy(Vector3f& vel, const Vector3f& accel);
|
||||
|
||||
/// input_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input position velocity and acceleration.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by the maximum acceleration and time constant set using the function set_max_speed_accel_xy and time constant.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void input_pos_vel_accel_xy(Vector3f& pos, Vector3f& vel, const Vector3f& accel);
|
||||
|
||||
// is_active_xy - returns true if the xy position controller has been run in the previous 5 loop times
|
||||
bool is_active_xy() const;
|
||||
|
||||
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
|
||||
/// when use_desired_velocity is true the desired velocity (i.e. feed forward) is incorporated at the pos_to_rate step
|
||||
/// stop_pos_xy_stabilisation
|
||||
void stop_pos_xy_stabilisation();
|
||||
|
||||
/// stop_vel_xy_stabilisation
|
||||
void stop_vel_xy_stabilisation();
|
||||
|
||||
/// update_xy_controller - runs the horizontal position controller correcting position, velocity and acceleration errors.
|
||||
/// Position and velocity errors are converted to velocity and acceleration targets using PID objects
|
||||
/// Desired velocity and accelerations are added to these corrections as they are calculated
|
||||
/// Kinematically consistent target position and desired velocity and accelerations should be provided before calling this function
|
||||
void update_xy_controller();
|
||||
|
||||
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home
|
||||
void set_target_to_stopping_point_xy();
|
||||
///
|
||||
/// Vertical position controller
|
||||
///
|
||||
|
||||
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
|
||||
/// results placed in stopping_position vector
|
||||
/// set_accel_xy() should be called before this method to set vehicle acceleration
|
||||
/// set_leash_length() should have been called before this method
|
||||
void get_stopping_point_xy(Vector3f &stopping_point) const;
|
||||
/// set_max_speed_accel_z - set the maximum horizontal speed in cm/s and acceleration in cm/s/s
|
||||
/// speed_down can be positive or negative but will always be interpreted as a descent speed
|
||||
void set_max_speed_accel_z(float speed_down, float speed_up, float accel_cmss);
|
||||
|
||||
/// get_pos_error - get position error vector between the current and target position
|
||||
const Vector3f get_pos_error() const { return _pos_target - _inav.get_position(); }
|
||||
/// get_max_accel_z_cmss - get the maximum vertical acceleration in cm/s/s
|
||||
float get_max_accel_z_cmss() const { return _accel_max_z_cmss; }
|
||||
|
||||
/// get_pos_error_xy - get the length of the position error vector in the xy plane
|
||||
float get_pos_error_xy() const { return norm(_pos_target.x - _inav.get_position().x, _pos_target.y - _inav.get_position().y); }
|
||||
// set_pos_error_max_z - set the maximum vertical position error that will be allowed
|
||||
void set_pos_error_max_z(float error_min, float error_max) { _p_pos_z.set_error_limits(error_min, error_max); }
|
||||
|
||||
/// get_bearing_to_target - get bearing to target position in centi-degrees
|
||||
int32_t get_bearing_to_target() const;
|
||||
// get_pos_error_max_z_cm - get the maximum vertical position error that will be allowed
|
||||
float get_pos_error_max_z_cm() { return _p_pos_z.get_error_max(); }
|
||||
float get_pos_error_min_z_cm() { return _p_pos_z.get_error_min(); }
|
||||
|
||||
/// xyz velocity controller
|
||||
/// get_max_speed_up_cms - accessors for current maximum up speed in cm/s
|
||||
float get_max_speed_up_cms() const { return _vel_max_up_cms; }
|
||||
|
||||
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller
|
||||
void init_vel_controller_xyz();
|
||||
/// get_max_speed_down_cms - accessors for current maximum down speed in cm/s. Will be a negative number
|
||||
float get_max_speed_down_cms() const { return _vel_max_down_cms; }
|
||||
|
||||
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher
|
||||
/// velocity targets should we set using set_desired_velocity_xyz() method
|
||||
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
|
||||
/// throttle targets will be sent directly to the motors
|
||||
void update_vel_controller_xyz();
|
||||
/// init_z_controller - initialise the position controller to the current position, velocity, acceleration and attitude.
|
||||
/// This function is the default initialisation for any position control that provides position, velocity and acceleration.
|
||||
void init_z_controller();
|
||||
|
||||
/// init_z_controller - initialise the position controller to the current position, velocity, acceleration and attitude.
|
||||
/// This function is the default initialisation for any position control that provides position, velocity and acceleration.
|
||||
/// This function does not allow any negative velocity or acceleration
|
||||
void init_z_controller_no_descent();
|
||||
|
||||
/// init_z_controller_stopping_point - initialise the position controller to the stopping point with zero velocity and acceleration.
|
||||
/// This function should be used when the expected kinimatic path assumes a stationary initial condition but does not specify a specific starting position.
|
||||
/// The starting position can be retrieved by getting the position target using get_pos_target_cm() after calling this function.
|
||||
void init_z_controller_stopping_point();
|
||||
|
||||
// relax_z_controller - initialise the position controller to the current position and velocity with decaying acceleration.
|
||||
/// This function decays the output acceleration by 95% every half second to achieve a smooth transition to zero requested acceleration.
|
||||
void relax_z_controller(float throttle_setting);
|
||||
|
||||
/// input_vel_accel_z calculate a jerk limited path from the current position, velocity and acceleration to an input velocity and acceleration.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by the maximum acceleration and time constant set using the function set_max_speed_accel_z and time constant.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The function alters the input velocitiy to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
virtual void input_vel_accel_z(Vector3f& vel, const Vector3f& accel, bool force_descend);
|
||||
|
||||
/// set_pos_target_z_from_climb_rate_cm - adjusts target up or down using a climb rate in cm/s
|
||||
/// using the default position control kinimatic path.
|
||||
void set_pos_target_z_from_climb_rate_cm(const float vel, bool force_descend);
|
||||
|
||||
/// input_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input position velocity and acceleration.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by the maximum acceleration and time constant set using the function set_max_speed_accel_z and time constant.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void input_pos_vel_accel_z(Vector3f& pos, Vector3f& vel, const Vector3f& accel);
|
||||
|
||||
/// set_alt_target_with_slew - adjusts target up or down using a commanded altitude in cm
|
||||
/// using the default position control kinimatic path.
|
||||
void set_alt_target_with_slew(const float& pos);
|
||||
|
||||
// is_active_z - returns true if the z position controller has been run in the previous 5 loop times
|
||||
bool is_active_z() const;
|
||||
|
||||
/// update_z_controller - runs the vertical position controller correcting position, velocity and acceleration errors.
|
||||
/// Position and velocity errors are converted to velocity and acceleration targets using PID objects
|
||||
/// Desired velocity and accelerations are added to these corrections as they are calculated
|
||||
/// Kinematically consistent target position and desired velocity and accelerations should be provided before calling this function
|
||||
void update_z_controller();
|
||||
|
||||
|
||||
|
||||
///
|
||||
/// Assessors
|
||||
///
|
||||
|
||||
/// set commanded position (cm), velocity (cm/s) and acceleration (cm/s/s) inputs when the path is created externally.
|
||||
void set_pos_vel_accel(const Vector3f& pos, const Vector3f& vel, const Vector3f& accel);
|
||||
void set_pos_vel_accel_xy(const Vector2f& pos, const Vector2f& vel, const Vector2f& accel);
|
||||
|
||||
|
||||
/// Position
|
||||
|
||||
/// set_pos_target_xy_cm - sets the position target in NEU cm from home
|
||||
void set_pos_target_xy_cm(float pos_x, float pos_y) { _pos_target.x = pos_x; _pos_target.y = pos_y; }
|
||||
|
||||
/// get_pos_target_cm - returns the position target in NEU cm from home
|
||||
const Vector3f& get_pos_target_cm() const { return _pos_target; }
|
||||
|
||||
/// set_pos_target_z_cm - set altitude target in cm above home
|
||||
void set_pos_target_z_cm(float pos_target) { _pos_target.z = pos_target; }
|
||||
|
||||
/// get_pos_target_z_cm - get desired altitude (in cm above home)
|
||||
float get_pos_target_z_cm() const { return _pos_target.z; }
|
||||
|
||||
/// get_stopping_point_xy_cm - calculates stopping point in NEU cm based on current position, velocity, vehicle acceleration
|
||||
void get_stopping_point_xy_cm(Vector3f &stopping_point) const;
|
||||
|
||||
/// get_stopping_point_z_cm - calculates stopping point in NEU cm based on current position, velocity, vehicle acceleration
|
||||
void get_stopping_point_z_cm(Vector3f& stopping_point) const;
|
||||
|
||||
/// get_pos_error_cm - get position error vector between the current and target position
|
||||
const Vector3f get_pos_error_cm() const { return _pos_target - _inav.get_position(); }
|
||||
|
||||
/// get_pos_error_xy_cm - get the length of the position error vector in the xy plane
|
||||
float get_pos_error_xy_cm() const { return norm(_pos_target.x - _inav.get_position().x, _pos_target.y - _inav.get_position().y); }
|
||||
|
||||
/// get_pos_error_z_cm - returns altitude error in cm
|
||||
float get_pos_error_z_cm() const { return (_pos_target.z - _inav.get_position().z); }
|
||||
|
||||
|
||||
/// Velocity
|
||||
|
||||
/// set_vel_desired_cms - sets desired velocity in NEU cm/s
|
||||
void set_vel_desired_cms(const Vector3f &des_vel) { _vel_desired = des_vel; }
|
||||
|
||||
/// set_vel_desired_xy_cms - sets horizontal desired velocity in NEU cm/s
|
||||
void set_vel_desired_xy_cms(float vel_x, float vel_y) {_vel_desired.x = vel_x; _vel_desired.y = vel_y; }
|
||||
|
||||
/// get_vel_desired_cms - returns desired velocity (i.e. feed forward) in cm/s in NEU
|
||||
const Vector3f& get_vel_desired_cms() { return _vel_desired; }
|
||||
|
||||
// get_vel_target_cms - returns the target velocity in NEU cm/s
|
||||
const Vector3f& get_vel_target_cms() const { return _vel_target; }
|
||||
|
||||
// get_vel_target_cms - returns the target velocity in NEU cm/s
|
||||
const Vector3f& get_vel_error_cms() const { return _vel_error; }
|
||||
|
||||
/// set_vel_desired_z_cms - sets desired velocity in cm/s in z axis
|
||||
void set_vel_desired_z_cms(float vel_z_cms) {_vel_desired.z = vel_z_cms;}
|
||||
|
||||
/// get_vel_target_z_cms - returns current vertical speed in cm/s
|
||||
float get_vel_target_z_cms() const { return _vel_target.z; }
|
||||
|
||||
|
||||
/// Acceleration
|
||||
|
||||
// set_accel_desired_xy_cmss set desired acceleration in cm/s in xy axis
|
||||
void set_accel_desired_xy_cmss(float accel_x_cms, float accel_y_cms) { _accel_desired.x = accel_x_cms; _accel_desired.y = accel_y_cms; }
|
||||
|
||||
// get_accel_target_cmss - returns the target acceleration in NEU cm/s/s
|
||||
const Vector3f& get_accel_target_cmss() const { return _accel_target; }
|
||||
|
||||
|
||||
/// Outputs
|
||||
|
||||
/// get desired roll and pitch to be passed to the attitude controller
|
||||
float get_roll_cd() const { return _roll_target; }
|
||||
@ -279,15 +285,17 @@ public:
|
||||
/// get desired yaw rate to be passed to the attitude controller
|
||||
float get_yaw_rate_cds() const { return _yaw_rate_target; }
|
||||
|
||||
|
||||
/// get desired roll and pitch to be passed to the attitude controller
|
||||
Vector3f get_thrust_vector() const;
|
||||
|
||||
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
||||
bool calculate_yaw_and_rate_yaw();
|
||||
/// get_bearing_to_target_cd - get bearing to target position in centi-degrees
|
||||
int32_t get_bearing_to_target_cd() const;
|
||||
|
||||
// get_leash_xy - returns horizontal leash length in cm
|
||||
float get_leash_xy() const { return _leash; }
|
||||
/// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request
|
||||
float get_lean_angle_max_cd() const;
|
||||
|
||||
|
||||
/// Other
|
||||
|
||||
/// get pid controllers
|
||||
AC_P_2D& get_pos_xy_p() { return _p_pos_xy; }
|
||||
@ -296,18 +304,15 @@ public:
|
||||
AC_PID_Basic& get_vel_z_pid() { return _pid_vel_z; }
|
||||
AC_PID& get_accel_z_pid() { return _pid_accel_z; }
|
||||
|
||||
/// accessors for reporting
|
||||
const Vector3f& get_vel_target() const { return _vel_target; }
|
||||
const Vector3f& get_accel_target() const { return _accel_target; }
|
||||
/// set_limit_accel_xy - mark that accel has been limited
|
||||
/// this prevents integrator buildup
|
||||
void set_limit_xy() { _limit_vector.x = _accel_target.x; _limit_vector.y = _accel_target.y; }
|
||||
|
||||
// overrides the velocity process variable for one timestep
|
||||
void override_vehicle_velocity_xy(const Vector2f& vel_xy) { _vehicle_horiz_vel = vel_xy; _flags.vehicle_horiz_vel_override = true; }
|
||||
|
||||
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
||||
void accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const;
|
||||
|
||||
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
||||
void lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const;
|
||||
|
||||
// time_since_last_xy_update - returns time in seconds since the horizontal position controller was last run
|
||||
float time_since_last_xy_update() const;
|
||||
Vector3f lean_angles_to_accel(const Vector3f& att_target_euler) const;
|
||||
|
||||
void write_log();
|
||||
|
||||
@ -319,39 +324,38 @@ public:
|
||||
// enable or disable high vibration compensation
|
||||
void set_vibe_comp(bool on_off) { _vibe_comp_enabled = on_off; }
|
||||
|
||||
/// get_vel_z_error_ratio - returns the proportion of error relative to the maximum request
|
||||
float get_vel_z_control_ratio() const { return constrain_float(_vel_z_control_ratio, 0.0f, 1.0f); }
|
||||
|
||||
/// standby_xyz_reset - resets I terms and removes position error
|
||||
/// This function will let Loiter and Alt Hold continue to operate
|
||||
/// in the event that the flight controller is in control of the
|
||||
/// aircraft when in standby.
|
||||
void standby_xyz_reset();
|
||||
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
protected:
|
||||
|
||||
// general purpose flags
|
||||
struct poscontrol_flags {
|
||||
uint16_t recalc_leash_z : 1; // 1 if we should recalculate the z axis leash length
|
||||
uint16_t recalc_leash_xy : 1; // 1 if we should recalculate the xy axis leash length
|
||||
uint16_t reset_desired_vel_to_pos : 1; // 1 if we should reset the rate_to_accel_xy step
|
||||
uint16_t reset_accel_to_lean_xy : 1; // 1 if we should reset the accel to lean angle step
|
||||
uint16_t reset_rate_to_accel_z : 1; // 1 if we should reset the rate_to_accel_z step
|
||||
uint16_t vehicle_horiz_vel_override : 1; // 1 if we should use _vehicle_horiz_vel as our velocity process variable for one timestep
|
||||
} _flags;
|
||||
|
||||
// limit flags structure
|
||||
struct poscontrol_limit_flags {
|
||||
bool pos_up; // true if we have hit the vertical position leash limit while going up
|
||||
bool pos_down; // true if we have hit the vertical position leash limit while going down
|
||||
bool vel_up; // true if we have hit the vertical velocity limit going up
|
||||
bool vel_down; // true if we have hit the vertical velocity limit going down
|
||||
bool accel_xy; // true if we have hit the horizontal accel limit
|
||||
bool pos_xy; // true if we have hit a horizontal position limit
|
||||
bool pos_up; // true if we have hit a vertical position limit while going up
|
||||
bool pos_down; // true if we have hit a vertical position limit while going down
|
||||
} _limit;
|
||||
|
||||
///
|
||||
/// z controller private methods
|
||||
///
|
||||
/// init_xy - initialise the position controller to the current position, velocity and acceleration.
|
||||
/// This function is private and contains all the shared xy axis intialisaion functions
|
||||
void init_xy();
|
||||
|
||||
// run position control for Z axis
|
||||
// target altitude should be set with one of these functions
|
||||
// set_alt_target
|
||||
// set_target_to_stopping_point_z
|
||||
// init_takeoff
|
||||
void run_z_controller();
|
||||
/// init_z - initialise the position controller to the current position, velocity and acceleration.
|
||||
/// This function is private and contains all the shared z axis intialisaion functions
|
||||
void init_z();
|
||||
|
||||
// get throttle using vibration-resistant calculation (uses feed forward with manually calculated gain)
|
||||
float get_throttle_with_vibration_override();
|
||||
@ -359,25 +363,14 @@ protected:
|
||||
// get earth-frame Z-axis acceleration with gravity removed in cm/s/s with +ve being up
|
||||
float get_z_accel_cmss() const { return -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; }
|
||||
|
||||
///
|
||||
/// xy controller private methods
|
||||
///
|
||||
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
||||
void accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const;
|
||||
|
||||
/// move velocity target using desired acceleration
|
||||
void desired_accel_to_vel(float nav_dt);
|
||||
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
||||
void lean_angles_to_accel_xy(float& accel_x_cmss, float& accel_y_cmss) const;
|
||||
|
||||
/// desired_vel_to_pos - move position target using desired velocities
|
||||
void desired_vel_to_pos(float nav_dt);
|
||||
|
||||
/// run horizontal position controller correcting position and velocity
|
||||
/// converts position (_pos_target) to target velocity (_vel_target)
|
||||
/// desired velocity (_vel_desired) is combined into final target velocity
|
||||
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
|
||||
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
|
||||
void run_xy_controller(float dt);
|
||||
|
||||
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
|
||||
float calc_leash_length(float speed_cms, float accel_cms, float kP) const;
|
||||
// calculate_yaw_and_rate_yaw - calculate the vehicle yaw and rate of yaw.
|
||||
bool calculate_yaw_and_rate_yaw();
|
||||
|
||||
/// initialise and check for ekf position resets
|
||||
void init_ekf_xy_reset();
|
||||
@ -392,28 +385,28 @@ protected:
|
||||
AC_AttitudeControl& _attitude_control;
|
||||
|
||||
// parameters
|
||||
AP_Float _accel_xy_filt_hz; // XY acceleration filter cutoff frequency
|
||||
AP_Float _lean_angle_max; // Maximum autopilot commanded angle (in degrees). Set to zero for Angle Max
|
||||
AC_P_2D _p_pos_xy; // XY axis position controller to convert distance error to desired velocity
|
||||
AC_P_1D _p_pos_z; // Z axis position controller to convert altitude error to desired climb rate
|
||||
AC_PID_2D _pid_vel_xy; // XY axis velocity controller to convert velocity error to desired acceleration
|
||||
AC_PID_Basic _pid_vel_z; // Z axis velocity controller to convert climb rate error to desired acceleration
|
||||
AC_PID _pid_accel_z; // Z axis acceleration controller to convert desired acceleration to throttle output
|
||||
AP_Float _lean_angle_max; // Maximum autopilot commanded angle (in degrees). Set to zero for Angle Max
|
||||
AP_Float _shaping_tc_xy_s; // time constant of the xy kinimatic path generation in seconds used to determine how quickly the aircraft varies the acceleration target
|
||||
AP_Float _shaping_tc_z_s; // time constant of the z kinimatic path generation in seconds used to determine how quickly the aircraft varies the acceleration target
|
||||
AC_P_2D _p_pos_xy; // XY axis position controller to convert distance error to desired velocity
|
||||
AC_P_1D _p_pos_z; // Z axis position controller to convert altitude error to desired climb rate
|
||||
AC_PID_2D _pid_vel_xy; // XY axis velocity controller to convert velocity error to desired acceleration
|
||||
AC_PID_Basic _pid_vel_z; // Z axis velocity controller to convert climb rate error to desired acceleration
|
||||
AC_PID _pid_accel_z; // Z axis acceleration controller to convert desired acceleration to throttle output
|
||||
|
||||
// internal variables
|
||||
float _dt; // time difference (in seconds) between calls from the main program
|
||||
uint64_t _last_update_xy_us; // system time (in microseconds) since last update_xy_controller call
|
||||
uint64_t _last_update_z_us; // system time (in microseconds) of last update_z_controller call
|
||||
float _speed_down_cms; // max descent rate in cm/s
|
||||
float _speed_up_cms; // max climb rate in cm/s
|
||||
float _speed_cms; // max horizontal speed in cm/s
|
||||
float _accel_z_cms; // max vertical acceleration in cm/s/s
|
||||
float _accel_last_z_cms; // max vertical acceleration in cm/s/s
|
||||
float _accel_cms; // max horizontal acceleration in cm/s/s
|
||||
float _leash; // horizontal leash length in cm. target will never be further than this distance from the vehicle
|
||||
float _leash_down_z; // vertical leash down in cm. target will never be further than this distance below the vehicle
|
||||
float _leash_up_z; // vertical leash up in cm. target will never be further than this distance above the vehicle
|
||||
float _vel_z_control_ratio = 2.0f; // confidence that we have control in the vertical axis
|
||||
uint64_t _last_update_z_us; // system time (in microseconds) since last update_z_controller call
|
||||
float _tc_xy_s; // time constant of the xy kinimatic path generation in seconds used to determine how quickly the aircraft varies the acceleration target
|
||||
float _tc_z_s; // time constant of the z kinimatic path generation in seconds used to determine how quickly the aircraft varies the acceleration target
|
||||
float _vel_max_xy_cms; // max horizontal speed in cm/s
|
||||
float _vel_max_up_cms; // max climb rate in cm/s
|
||||
float _vel_max_down_cms; // max descent rate in cm/s
|
||||
float _accel_max_xy_cmss; // max horizontal acceleration in cm/s/s
|
||||
float _accel_limit_xy_cmss; // max horizontal acceleration in cm/s/s
|
||||
float _accel_max_z_cmss; // max vertical acceleration in cm/s/s
|
||||
float _vel_z_control_ratio = 2.0f; // confidence that we have control in the vertical axis
|
||||
|
||||
// output from controller
|
||||
float _roll_target; // desired roll angle in centi-degrees calculated by position controller
|
||||
@ -429,10 +422,8 @@ protected:
|
||||
Vector3f _accel_desired; // desired acceleration in NEU cm/s/s (feed forward)
|
||||
Vector3f _accel_target; // acceleration target in NEU cm/s/s
|
||||
Vector3f _accel_error; // acceleration error in NEU cm/s/s
|
||||
Vector3f _limit_vector; //
|
||||
Vector2f _vehicle_horiz_vel; // velocity to use if _flags.vehicle_horiz_vel_override is set
|
||||
LowPassFilterFloat _vel_error_filter; // low-pass-filter on z-axis velocity error
|
||||
|
||||
LowPassFilterVector2f _accel_target_filter; // acceleration target filter
|
||||
|
||||
// ekf reset handling
|
||||
uint32_t _ekf_xy_reset_ms; // system time of last recorded ekf xy position reset
|
||||
|
@ -1,101 +1,56 @@
|
||||
#include "AC_PosControl_Sub.h"
|
||||
|
||||
AC_PosControl_Sub::AC_PosControl_Sub(AP_AHRS_View& ahrs, const AP_InertialNav& inav,
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control) :
|
||||
AC_PosControl(ahrs, inav, motors, attitude_control),
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control, float dt) :
|
||||
AC_PosControl(ahrs, inav, motors, attitude_control, dt),
|
||||
_alt_max(0.0f),
|
||||
_alt_min(0.0f)
|
||||
{}
|
||||
|
||||
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
void AC_PosControl_Sub::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend)
|
||||
/// input_vel_z calculate a jerk limited path from the current position, velocity and acceleration to an input velocity.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by :
|
||||
/// maximum velocity - vel_max,
|
||||
/// maximum acceleration - accel_max,
|
||||
/// time constant - tc.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The time constant must be positive.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void AC_PosControl_Sub::input_vel_accel_z(Vector3f& vel, const Vector3f& accel, bool force_descend)
|
||||
{
|
||||
// adjust desired alt if motors have not hit their limits
|
||||
// To-Do: add check of _limit.pos_down?
|
||||
if ((climb_rate_cms<0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
|
||||
_pos_target.z += climb_rate_cms * dt;
|
||||
// check for ekf z position reset
|
||||
check_for_ekf_z_reset();
|
||||
|
||||
// limit desired velocity to prevent breeching altitude limits
|
||||
if (_alt_min < 0 && _alt_min < _alt_max && _alt_max < 100 && _pos_target.z < _alt_min) {
|
||||
vel.z = constrain_float(vel.z,
|
||||
sqrt_controller(_alt_min-_pos_target.z, 0.0f, _accel_max_z_cmss, 0.0f),
|
||||
sqrt_controller(_alt_max-_pos_target.z, 0.0f, _accel_max_z_cmss, 0.0f));
|
||||
}
|
||||
|
||||
// do not let target alt get above limit
|
||||
if (_alt_max < 100 && _pos_target.z > _alt_max) {
|
||||
_pos_target.z = _alt_max;
|
||||
_limit.pos_up = true;
|
||||
}
|
||||
|
||||
// do not let target alt get below limit
|
||||
if (_alt_min < 0 && _alt_min < _alt_max && _pos_target.z < _alt_min) {
|
||||
_pos_target.z = _alt_min;
|
||||
_limit.pos_down = true;
|
||||
}
|
||||
|
||||
// do not use z-axis desired velocity feed forward
|
||||
// vel_desired set to desired climb rate for reporting and land-detector
|
||||
_vel_desired.z = 0.0f;
|
||||
}
|
||||
|
||||
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
||||
void AC_PosControl_Sub::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend)
|
||||
{
|
||||
// calculated increased maximum acceleration if over speed
|
||||
float accel_z_cms = _accel_z_cms;
|
||||
if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) {
|
||||
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms;
|
||||
float accel_z_cms = _accel_max_z_cmss;
|
||||
if (_vel_desired.z < _vel_max_down_cms && !is_zero(_vel_max_down_cms)) {
|
||||
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _vel_max_down_cms;
|
||||
}
|
||||
if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) {
|
||||
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms;
|
||||
if (_vel_desired.z > _vel_max_up_cms && !is_zero(_vel_max_up_cms)) {
|
||||
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _vel_max_up_cms;
|
||||
}
|
||||
accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f);
|
||||
|
||||
// jerk_z is calculated to reach full acceleration in 1000ms.
|
||||
float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO;
|
||||
|
||||
float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f*fabsf(_vel_desired.z - climb_rate_cms)*jerk_z));
|
||||
|
||||
_accel_last_z_cms += jerk_z * dt;
|
||||
_accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms);
|
||||
|
||||
float vel_change_limit = _accel_last_z_cms * dt;
|
||||
_vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit);
|
||||
|
||||
// adjust desired alt if motors have not hit their limits
|
||||
// To-Do: add check of _limit.pos_down?
|
||||
if ((_vel_desired.z<0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
|
||||
_pos_target.z += _vel_desired.z * dt;
|
||||
update_pos_vel_accel_z(_pos_target, _vel_desired, _accel_desired, _dt, _limit_vector);
|
||||
|
||||
// prevent altitude target from breeching altitude limits
|
||||
if (_alt_min < 0 && _alt_min < _alt_max && _alt_max < 100 && _pos_target.z < _alt_min) {
|
||||
_pos_target.z = constrain_float(_pos_target.z, _alt_min, _alt_max);
|
||||
}
|
||||
|
||||
// do not let target alt get above limit
|
||||
if (_alt_max < 100 && _pos_target.z > _alt_max) {
|
||||
_pos_target.z = _alt_max;
|
||||
_limit.pos_up = true;
|
||||
// decelerate feed forward to zero
|
||||
_vel_desired.z = constrain_float(0.0f, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit);
|
||||
}
|
||||
shape_vel_accel(vel.z, accel.z,
|
||||
_vel_desired.z, _accel_desired.z,
|
||||
_vel_max_down_cms, _vel_max_up_cms,
|
||||
-accel_z_cms, accel_z_cms,
|
||||
_tc_z_s, _dt);
|
||||
|
||||
// do not let target alt get below limit
|
||||
if (_alt_min < 0 && _alt_min < _alt_max && _pos_target.z < _alt_min) {
|
||||
_pos_target.z = _alt_min;
|
||||
_limit.pos_down = true;
|
||||
// decelerate feed forward to zero
|
||||
_vel_desired.z = constrain_float(0.0f, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit);
|
||||
}
|
||||
}
|
||||
|
||||
/// relax_alt_hold_controllers - set all desired and targets to measured
|
||||
void AC_PosControl_Sub::relax_alt_hold_controllers()
|
||||
{
|
||||
_pos_target.z = _inav.get_altitude();
|
||||
_vel_desired.z = 0.0f;
|
||||
_vel_target.z = _inav.get_velocity_z();
|
||||
_accel_desired.z = 0.0f;
|
||||
_accel_last_z_cms = 0.0f;
|
||||
_flags.reset_rate_to_accel_z = true;
|
||||
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
|
||||
_pid_accel_z.reset_filter();
|
||||
update_vel_accel_z(vel, accel, _dt, _limit_vector);
|
||||
}
|
||||
|
@ -2,43 +2,34 @@
|
||||
|
||||
#include "AC_PosControl.h"
|
||||
|
||||
#define POSCONTROL_JERK_RATIO 1.0f // Defines the time it takes to reach the requested acceleration
|
||||
|
||||
class AC_PosControl_Sub : public AC_PosControl {
|
||||
public:
|
||||
AC_PosControl_Sub(AP_AHRS_View & ahrs, const AP_InertialNav& inav,
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control);
|
||||
const AP_Motors& motors, AC_AttitudeControl& attitude_control, float dt);
|
||||
|
||||
/// set_alt_max - sets maximum altitude above the ekf origin in cm
|
||||
/// only enforced when set_alt_target_from_climb_rate is used
|
||||
/// only enforced when set_pos_target_z_from_climb_rate_cm is used
|
||||
/// set to zero to disable limit
|
||||
void set_alt_max(float alt) { _alt_max = alt; }
|
||||
|
||||
/// set_alt_min - sets the minimum altitude (maximum depth) in cm
|
||||
/// only enforced when set_alt_target_from_climb_rate is used
|
||||
/// only enforced when set_pos_target_z_from_climb_rate_cm is used
|
||||
/// set to zero to disable limit
|
||||
void set_alt_min(float alt) { _alt_min = alt; }
|
||||
|
||||
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
||||
void set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend) override;
|
||||
|
||||
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
|
||||
/// should be called continuously (with dt set to be the expected time between calls)
|
||||
/// actual position target will be moved no faster than the speed_down and speed_up
|
||||
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
||||
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
||||
void set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend) override;
|
||||
|
||||
/// relax_alt_hold_controllers - set all desired and targets to measured
|
||||
void relax_alt_hold_controllers(float throttle_setting) {
|
||||
AC_PosControl::relax_alt_hold_controllers(throttle_setting);
|
||||
}
|
||||
|
||||
/// relax_alt_hold_controllers - set all desired and targets to measured
|
||||
/// integrator is not reset
|
||||
void relax_alt_hold_controllers();
|
||||
/// input_vel_z calculate a jerk limited path from the current position, velocity and acceleration to an input velocity.
|
||||
/// The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
/// The kinematic path is constrained by :
|
||||
/// maximum velocity - vel_max,
|
||||
/// maximum acceleration - accel_max,
|
||||
/// time constant - tc.
|
||||
/// The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
|
||||
/// The time constant also defines the time taken to achieve the maximum acceleration.
|
||||
/// The time constant must be positive.
|
||||
/// The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
|
||||
void input_vel_accel_z(Vector3f& vel, const Vector3f& accel, bool force_descend) override;
|
||||
|
||||
private:
|
||||
float _alt_max; // max altitude - should be updated from the main code with altitude limit from fence
|
||||
|
Loading…
Reference in New Issue
Block a user