AC_PID: Support changing update period

This commit is contained in:
lthall 2022-12-02 23:04:53 +10:30 committed by Andrew Tridgell
parent 5615ebd8b8
commit 925510e44f
13 changed files with 94 additions and 132 deletions

View File

@ -73,8 +73,8 @@ const AP_Param::GroupInfo AC_HELI_PID::var_info[] = {
};
/// Constructor for PID
AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
AC_PID(initial_p, initial_i, initial_d, initial_ff, initial_imax, initial_filt_T_hz, initial_filt_E_hz, initial_filt_D_hz, dt)
AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz) :
AC_PID(initial_p, initial_i, initial_d, initial_ff, initial_imax, initial_filt_T_hz, initial_filt_E_hz, initial_filt_D_hz)
{
_last_requested_rate = 0;
}
@ -84,7 +84,7 @@ AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, floa
void AC_HELI_PID::update_leaky_i(float leak_rate)
{
if (!is_zero(_ki) && !is_zero(_dt)){
if (!is_zero(_ki)){
// integrator does not leak down below Leak Min
if (_integrator > _leak_min){

View File

@ -17,7 +17,7 @@ class AC_HELI_PID : public AC_PID {
public:
/// Constructor for PID
AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz);
CLASS_NO_COPY(AC_HELI_PID);

View File

@ -69,8 +69,7 @@ const AP_Param::GroupInfo AC_PID::var_info[] = {
// Constructor
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
float dt, float initial_srmax, float initial_srtau):
_dt(dt)
float initial_srmax, float initial_srtau)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
@ -96,13 +95,6 @@ AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_
_slew_limit_scale = 1;
}
// set_dt - set time step in seconds
void AC_PID::set_dt(float dt)
{
// set dt and calculate the input filter alpha
_dt = dt;
}
// filt_T_hz - set target filter hz
void AC_PID::filt_T_hz(float hz)
{
@ -131,7 +123,7 @@ void AC_PID::slew_limit(float smax)
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float AC_PID::update_all(float target, float measurement, bool limit)
float AC_PID::update_all(float target, float measurement, float dt, bool limit)
{
// don't process inf or NaN
if (!isfinite(target) || !isfinite(measurement)) {
@ -146,24 +138,24 @@ float AC_PID::update_all(float target, float measurement, bool limit)
_derivative = 0.0f;
} else {
float error_last = _error;
_target += get_filt_T_alpha() * (target - _target);
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
_target += get_filt_T_alpha(dt) * (target - _target);
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(limit);
update_i(dt, limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
@ -184,7 +176,7 @@ float AC_PID::update_all(float target, float measurement, bool limit)
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float AC_PID::update_error(float error, bool limit)
float AC_PID::update_error(float error, float dt, bool limit)
{
// don't process inf or NaN
if (!isfinite(error)) {
@ -200,23 +192,23 @@ float AC_PID::update_error(float error, bool limit)
_derivative = 0.0f;
} else {
float error_last = _error;
_error += get_filt_E_alpha() * (error - _error);
_error += get_filt_E_alpha(dt) * (error - _error);
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(limit);
update_i(dt, limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
@ -233,12 +225,12 @@ float AC_PID::update_error(float error, bool limit)
// update_i - update the integral
// If the limit flag is set the integral is only allowed to shrink
void AC_PID::update_i(bool limit)
void AC_PID::update_i(float dt, bool limit)
{
if (!is_zero(_ki) && is_positive(_dt)) {
if (!is_zero(_ki) && is_positive(dt)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * _dt;
_integrator += ((float)_error * _ki) * dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
@ -302,7 +294,7 @@ void AC_PID::save_gains()
}
/// Overload the function call operator to permit easy initialisation
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz)
{
_kp.set(p_val);
_ki.set(i_val);
@ -312,31 +304,24 @@ void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, flo
_filt_T_hz.set(input_filt_T_hz);
_filt_E_hz.set(input_filt_E_hz);
_filt_D_hz.set(input_filt_D_hz);
_dt = dt;
}
// get_filt_T_alpha - get the target filter alpha
float AC_PID::get_filt_T_alpha() const
float AC_PID::get_filt_T_alpha(float dt) const
{
return get_filt_alpha(_filt_T_hz);
return calc_lowpass_alpha_dt(dt, _filt_T_hz);
}
// get_filt_E_alpha - get the error filter alpha
float AC_PID::get_filt_E_alpha() const
float AC_PID::get_filt_E_alpha(float dt) const
{
return get_filt_alpha(_filt_E_hz);
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
// get_filt_D_alpha - get the derivative filter alpha
float AC_PID::get_filt_D_alpha() const
float AC_PID::get_filt_D_alpha(float dt) const
{
return get_filt_alpha(_filt_D_hz);
}
// get_filt_alpha - calculate a filter alpha
float AC_PID::get_filt_alpha(float filt_hz) const
{
return calc_lowpass_alpha_dt(_dt, filt_hz);
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
void AC_PID::set_integrator(float target, float measurement, float integrator)
@ -356,9 +341,11 @@ void AC_PID::set_integrator(float integrator)
_pid_info.I = _integrator;
}
void AC_PID::relax_integrator(float integrator, float time_constant)
void AC_PID::relax_integrator(float integrator, float dt, float time_constant)
{
integrator = constrain_float(integrator, -_kimax, _kimax);
_integrator = _integrator + (integrator - _integrator) * (_dt / (_dt + time_constant));
if (is_positive(dt)) {
_integrator = _integrator + (integrator - _integrator) * (dt / (dt + time_constant));
}
_pid_info.I = _integrator;
}

View File

@ -23,18 +23,15 @@ public:
// Constructor for PID
AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
float dt, float initial_srmax=0, float initial_srtau=1.0);
float initial_srmax=0, float initial_srtau=1.0);
CLASS_NO_COPY(AC_PID);
// set_dt - set time step in seconds
void set_dt(float dt);
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float update_all(float target, float measurement, bool limit = false);
float update_all(float target, float measurement, float dt, bool limit = false);
// update_error - set error input to PID controller and calculate outputs
// target is set to zero and error is set and filtered
@ -42,11 +39,11 @@ public:
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float update_error(float error, bool limit = false);
float update_error(float error, float dt, bool limit = false);
// update_i - update the integral
// if the limit flag is set the integral is only allowed to shrink
void update_i(bool limit);
void update_i(float dt, bool limit);
// get_pid - get results from pid controller
float get_pid() const;
@ -71,7 +68,7 @@ public:
void save_gains();
/// operator function call for easy initialisation
void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt);
void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz);
// get accessors
AP_Float &kP() { return _kp; }
@ -85,10 +82,9 @@ public:
AP_Float &slew_limit() { return _slew_rate_max; }
float imax() const { return _kimax.get(); }
float get_filt_alpha(float filt_hz) const;
float get_filt_T_alpha() const;
float get_filt_E_alpha() const;
float get_filt_D_alpha() const;
float get_filt_T_alpha(float dt) const;
float get_filt_E_alpha(float dt) const;
float get_filt_D_alpha(float dt) const;
// set accessors
void kP(const float v) { _kp.set(v); }
@ -109,7 +105,7 @@ public:
void set_integrator(float target, float measurement, float i);
void set_integrator(float error, float i);
void set_integrator(float i);
void relax_integrator(float integrator, float time_constant);
void relax_integrator(float integrator, float dt, float time_constant);
// set slew limiter scale factor
void set_slew_limit_scale(int8_t scale) { _slew_limit_scale = scale; }
@ -149,7 +145,6 @@ protected:
} _flags;
// internal variables
float _dt; // timestep in seconds
float _integrator; // integrator value
float _target; // target value to enable filtering
float _error; // error value to enable filtering

View File

@ -50,8 +50,7 @@ const AP_Param::GroupInfo AC_PID_2D::var_info[] = {
};
// Constructor
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
_dt(dt)
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
@ -72,7 +71,7 @@ AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated if it does not increase in the direction of the limit vector
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit)
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit)
{
// don't process inf or NaN
if (target.is_nan() || target.is_inf() ||
@ -89,17 +88,17 @@ Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measureme
_derivative.zero();
} else {
Vector2f error_last{_error};
_error += ((_target - measurement) - _error) * get_filt_E_alpha();
_error += ((_target - measurement) - _error) * get_filt_E_alpha(dt);
// calculate and filter derivative
if (_dt > 0.0f) {
const Vector2f derivative{(_error - error_last) / _dt};
_derivative += (derivative - _derivative) * get_filt_D_alpha();
if (is_positive(dt)) {
const Vector2f derivative{(_error - error_last) / dt};
_derivative += (derivative - _derivative) * get_filt_D_alpha(dt);
}
}
// update I term
update_i(limit);
update_i(dt, limit);
_pid_info_x.target = _target.x;
_pid_info_x.actual = measurement.x;
@ -120,19 +119,19 @@ Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measureme
return _error * _kp + _integrator + _derivative * _kd + _target * _kff;
}
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit)
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit)
{
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, Vector2f{limit.x, limit.y});
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, dt, Vector2f{limit.x, limit.y});
}
// update_i - update the integral
// If the limit is set the integral is only allowed to reduce in the direction of the limit
void AC_PID_2D::update_i(const Vector2f &limit)
void AC_PID_2D::update_i(float dt, const Vector2f &limit)
{
_pid_info_x.limit = false;
_pid_info_y.limit = false;
Vector2f delta_integrator = (_error * _ki) * _dt;
Vector2f delta_integrator = (_error * _ki) * dt;
float integrator_length = _integrator.length();
_integrator += delta_integrator;
// do not let integrator increase in length if delta_integrator is in the direction of limit
@ -186,15 +185,15 @@ void AC_PID_2D::save_gains()
}
// get the target filter alpha
float AC_PID_2D::get_filt_E_alpha() const
float AC_PID_2D::get_filt_E_alpha(float dt) const
{
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
// get the derivative filter alpha
float AC_PID_2D::get_filt_D_alpha() const
float AC_PID_2D::get_filt_D_alpha(float dt) const
{
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i)

View File

@ -15,23 +15,20 @@ class AC_PID_2D {
public:
// Constructor for PID
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt);
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz);
CLASS_NO_COPY(AC_PID_2D);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated if it does not increase in the direction of the limit vector
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit);
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit);
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit);
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit);
// update the integral
// if the limit flag is set the integral is only allowed to shrink
void update_i(const Vector2f &limit);
void update_i(float dt, const Vector2f &limit);
// get results from pid controller
Vector2f get_p() const;
@ -57,8 +54,8 @@ public:
AP_Float &filt_E_hz() { return _filt_E_hz; }
AP_Float &filt_D_hz() { return _filt_D_hz; }
float imax() const { return _kimax.get(); }
float get_filt_E_alpha() const;
float get_filt_D_alpha() const;
float get_filt_E_alpha(float dt) const;
float get_filt_D_alpha(float dt) const;
// set accessors
void kP(float v) { _kp.set(v); }
@ -93,7 +90,6 @@ protected:
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
// internal variables
float _dt; // timestep in seconds
Vector2f _target; // target value to enable filtering
Vector2f _error; // error value to enable filtering
Vector2f _derivative; // last derivative from low-pass filter

View File

@ -52,8 +52,7 @@ const AP_Param::GroupInfo AC_PID_Basic::var_info[] = {
};
// Constructor
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
_dt(dt)
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
@ -70,16 +69,16 @@ AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, fl
_reset_filter = true;
}
float AC_PID_Basic::update_all(float target, float measurement, bool limit)
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit)
{
return update_all(target, measurement, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
return update_all(target, measurement, dt, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
}
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg, bool limit_pos)
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos)
{
// don't process inf or NaN
if (!isfinite(target) || isnan(target) ||
@ -97,17 +96,17 @@ float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg,
_derivative = 0.0f;
} else {
float error_last = _error;
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
// calculate and filter derivative
if (is_positive(_dt)) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(limit_neg, limit_pos);
update_i(dt, limit_neg, limit_pos);
const float P_out = _error * _kp;
const float D_out = _derivative * _kd;
@ -126,12 +125,12 @@ float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg,
// update_i - update the integral
// if limit_neg is true, the integral can only increase
// if limit_pos is true, the integral can only decrease
void AC_PID_Basic::update_i(bool limit_neg, bool limit_pos)
void AC_PID_Basic::update_i(float dt, bool limit_neg, bool limit_pos)
{
if (!is_zero(_ki)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * _dt;
_integrator += ((float)_error * _ki) * dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
@ -158,15 +157,15 @@ void AC_PID_Basic::save_gains()
}
// get_filt_T_alpha - get the target filter alpha
float AC_PID_Basic::get_filt_E_alpha() const
float AC_PID_Basic::get_filt_E_alpha(float dt) const
{
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
// get_filt_D_alpha - get the derivative filter alpha
float AC_PID_Basic::get_filt_D_alpha() const
float AC_PID_Basic::get_filt_D_alpha(float dt) const
{
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
void AC_PID_Basic::set_integrator(float target, float measurement, float i)

View File

@ -13,21 +13,18 @@ class AC_PID_Basic {
public:
// Constructor for PID
AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz);
// set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float update_all(float target, float measurement, bool limit = false) WARN_IF_UNUSED;
float update_all(float target, float measurement, bool limit_neg, bool limit_pos) WARN_IF_UNUSED;
float update_all(float target, float measurement, float dt, bool limit = false) WARN_IF_UNUSED;
float update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos) WARN_IF_UNUSED;
// update the integral
// if the limit flags are set the integral is only allowed to shrink
void update_i(bool limit_neg, bool limit_pos);
void update_i(float dt, bool limit_neg, bool limit_pos);
// get results from pid controller
float get_p() const WARN_IF_UNUSED { return _error * _kp; }
@ -53,8 +50,8 @@ public:
AP_Float &filt_E_hz() WARN_IF_UNUSED { return _filt_E_hz; }
AP_Float &filt_D_hz() WARN_IF_UNUSED { return _filt_D_hz; }
float imax() const WARN_IF_UNUSED { return _kimax.get(); }
float get_filt_E_alpha() const WARN_IF_UNUSED;
float get_filt_D_alpha() const WARN_IF_UNUSED;
float get_filt_E_alpha(float dt) const WARN_IF_UNUSED;
float get_filt_D_alpha(float dt) const WARN_IF_UNUSED;
// set accessors
void kP(float v) { _kp.set(v); }
@ -87,7 +84,6 @@ protected:
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
// internal variables
float _dt; // timestep in seconds
float _target; // target value to enable filtering
float _error; // error value to enable filtering
float _derivative; // last derivative for low-pass filter

View File

@ -13,8 +13,7 @@ const AP_Param::GroupInfo AC_P_1D::var_info[] = {
};
// Constructor
AC_P_1D::AC_P_1D(float initial_p, float dt) :
_dt(dt)
AC_P_1D::AC_P_1D(float initial_p)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
@ -38,7 +37,7 @@ float AC_P_1D::update_all(float &target, float measurement)
}
// MIN(_Dxy_max, _D2xy_max / _kxy_P) limits the max accel to the point where max jerk is exceeded
return sqrt_controller(_error, _kp, _D1_max, _dt);
return sqrt_controller(_error, _kp, _D1_max, 0.0);
}
// set_limits - sets the maximum error to limit output and first and second derivative of output

View File

@ -12,13 +12,10 @@ class AC_P_1D {
public:
// constructor
AC_P_1D(float initial_p, float dt);
AC_P_1D(float initial_p);
CLASS_NO_COPY(AC_P_1D);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
// update_all - set target and measured inputs to P controller and calculate outputs
// target and measurement are filtered
float update_all(float &target, float measurement) WARN_IF_UNUSED;
@ -56,7 +53,6 @@ private:
AP_Float _kp;
// internal variables
float _dt; // time step in seconds
float _error; // time step in seconds
float _error_min; // error limit in negative direction
float _error_max; // error limit in positive direction

View File

@ -13,8 +13,7 @@ const AP_Param::GroupInfo AC_P_2D::var_info[] = {
};
// Constructor
AC_P_2D::AC_P_2D(float initial_p, float dt) :
_dt(dt)
AC_P_2D::AC_P_2D(float initial_p)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
@ -36,7 +35,7 @@ Vector2f AC_P_2D::update_all(postype_t &target_x, postype_t &target_y, const Vec
}
// MIN(_Dmax, _D2max / _kp) limits the max accel to the point where max jerk is exceeded
return sqrt_controller(_error, _kp, _D1_max, _dt);
return sqrt_controller(_error, _kp, _D1_max, 0.0);
}
// set_limits - sets the maximum error to limit output and first and second derivative of output

View File

@ -12,13 +12,10 @@ class AC_P_2D {
public:
// constructor
AC_P_2D(float initial_p, float dt);
AC_P_2D(float initial_p);
CLASS_NO_COPY(AC_P_2D);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
// set target and measured inputs to P controller and calculate outputs
Vector2f update_all(postype_t &target_x, postype_t &target_y, const Vector2f &measurement) WARN_IF_UNUSED;
@ -58,7 +55,6 @@ private:
AP_Float _kp;
// internal variables
float _dt; // time step in seconds
Vector2f _error; // time step in seconds
float _error_max; // error limit in positive direction
float _D1_max; // maximum first derivative of output

View File

@ -70,8 +70,8 @@ void setup()
void loop()
{
// setup (unfortunately must be done here as we cannot create a global AC_PID object)
AC_PID pid(TEST_P, TEST_I, TEST_D, 0.0f, TEST_IMAX * 100.0f, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_INITIAL_FF, TEST_IMAX * 100, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
AC_PID pid(TEST_P, TEST_I, TEST_D, 0.0f, TEST_IMAX * 100.0f, 0.0f, 0.0f, TEST_FILTER);
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_INITIAL_FF, TEST_IMAX * 100, 0.0f, 0.0f, TEST_FILTER);
// display PID gains
hal.console->printf("P %f I %f D %f imax %f\n", (double)pid.kP(), (double)pid.kI(), (double)pid.kD(), (double)pid.imax());
@ -91,7 +91,7 @@ void loop()
rc().read_input(); // poll the radio for new values
const uint16_t radio_in = c->get_radio_in();
const int16_t error = radio_in - radio_trim;
pid.update_error(error);
pid.update_error(error, TEST_DT);
const float control_P = pid.get_p();
const float control_I = pid.get_i();
const float control_D = pid.get_d();