mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-28 19:48:31 -04:00
AP_VisualOdom: integrate IntelT265 backend
This commit is contained in:
parent
f0e11d9a5c
commit
8f94a0cfb0
@ -16,6 +16,7 @@
|
||||
#include "AP_VisualOdom.h"
|
||||
#include "AP_VisualOdom_Backend.h"
|
||||
#include "AP_VisualOdom_MAV.h"
|
||||
#include "AP_VisualOdom_IntelT265.h"
|
||||
#include <AP_AHRS/AP_AHRS.h>
|
||||
#include <AP_Logger/AP_Logger.h>
|
||||
|
||||
@ -27,7 +28,7 @@ const AP_Param::GroupInfo AP_VisualOdom::var_info[] = {
|
||||
// @Param: _TYPE
|
||||
// @DisplayName: Visual odometry camera connection type
|
||||
// @Description: Visual odometry camera connection type
|
||||
// @Values: 0:None,1:MAV
|
||||
// @Values: 0:None,1:MAV,2:IntelT265
|
||||
// @User: Advanced
|
||||
// @RebootRequired: True
|
||||
AP_GROUPINFO_FLAGS("_TYPE", 0, AP_VisualOdom, _type, 0, AP_PARAM_FLAG_ENABLE),
|
||||
@ -82,8 +83,16 @@ AP_VisualOdom::AP_VisualOdom()
|
||||
void AP_VisualOdom::init()
|
||||
{
|
||||
// create backend
|
||||
if (_type == AP_VisualOdom_Type_MAV) {
|
||||
switch (_type) {
|
||||
case AP_VisualOdom_Type_None:
|
||||
// do nothing
|
||||
break;
|
||||
case AP_VisualOdom_Type_MAV:
|
||||
_driver = new AP_VisualOdom_MAV(*this);
|
||||
break;
|
||||
case AP_VisualOdom_Type_IntelT265:
|
||||
_driver = new AP_VisualOdom_IntelT265(*this);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -36,8 +36,9 @@ public:
|
||||
|
||||
// external position backend types (used by _TYPE parameter)
|
||||
enum AP_VisualOdom_Type {
|
||||
AP_VisualOdom_Type_None = 0,
|
||||
AP_VisualOdom_Type_MAV = 1
|
||||
AP_VisualOdom_Type_None = 0,
|
||||
AP_VisualOdom_Type_MAV = 1,
|
||||
AP_VisualOdom_Type_IntelT265 = 2
|
||||
};
|
||||
|
||||
// detect and initialise any sensors
|
||||
|
@ -34,176 +34,3 @@ bool AP_VisualOdom_Backend::healthy() const
|
||||
// healthy if we have received sensor messages within the past 300ms
|
||||
return ((AP_HAL::millis() - _last_update_ms) < AP_VISUALODOM_TIMEOUT_MS);
|
||||
}
|
||||
|
||||
// general purpose method to send position estimate data to EKF
|
||||
void AP_VisualOdom_Backend::handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude)
|
||||
{
|
||||
Vector3f pos = {x, y, z};
|
||||
Quaternion att = attitude;
|
||||
|
||||
// handle user request to align camera
|
||||
if (_align_camera) {
|
||||
if (align_sensor_to_vehicle(pos, attitude)) {
|
||||
_align_camera = false;
|
||||
}
|
||||
}
|
||||
|
||||
// rotate position and attitude to align with vehicle
|
||||
rotate_and_correct_position(pos);
|
||||
rotate_attitude(att);
|
||||
|
||||
// send attitude and position to EKF
|
||||
const float posErr = 0; // parameter required?
|
||||
const float angErr = 0; // parameter required?
|
||||
const uint32_t reset_timestamp_ms = 0; // no data available
|
||||
AP::ahrs().writeExtNavData(_frontend.get_pos_offset(), pos, att, posErr, angErr, time_ms, reset_timestamp_ms);
|
||||
|
||||
// calculate euler orientation for logging
|
||||
float roll;
|
||||
float pitch;
|
||||
float yaw;
|
||||
att.to_euler(roll, pitch, yaw);
|
||||
|
||||
// log sensor data
|
||||
AP::logger().Write_VisualPosition(remote_time_us, time_ms, x, y, z, degrees(roll), degrees(pitch), degrees(yaw));
|
||||
|
||||
// store corrected attitude for use in pre-arm checks
|
||||
_attitude_last = att;
|
||||
_have_attitude = true;
|
||||
|
||||
// record time for health monitoring
|
||||
_last_update_ms = AP_HAL::millis();
|
||||
}
|
||||
|
||||
// apply rotation and correction to position
|
||||
void AP_VisualOdom_Backend::rotate_and_correct_position(Vector3f &position) const
|
||||
{
|
||||
if (_use_pos_rotation) {
|
||||
position = _pos_rotation * position;
|
||||
}
|
||||
position += _pos_correction;
|
||||
}
|
||||
|
||||
// rotate attitude using _yaw_trim
|
||||
void AP_VisualOdom_Backend::rotate_attitude(Quaternion &attitude) const
|
||||
{
|
||||
// apply orientation rotation
|
||||
if (_use_att_rotation) {
|
||||
attitude *= _att_rotation;
|
||||
}
|
||||
|
||||
// apply earth-frame yaw rotation
|
||||
if (!is_zero(_yaw_trim)) {
|
||||
attitude = _yaw_rotation * attitude;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// use sensor provided attitude to calculate rotation to align sensor with AHRS/EKF attitude
|
||||
bool AP_VisualOdom_Backend::align_sensor_to_vehicle(const Vector3f &position, const Quaternion &attitude)
|
||||
{
|
||||
// fail immediately if ahrs cannot provide attitude
|
||||
Quaternion ahrs_quat;
|
||||
if (!AP::ahrs().get_quaternion(ahrs_quat)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// if ahrs's yaw is from the compass, wait until it has been initialised
|
||||
if (!AP::ahrs().is_ext_nav_used_for_yaw() && !AP::ahrs().yaw_initialised()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// clear any existing errors
|
||||
_error_orientation = false;
|
||||
|
||||
// create rotation quaternion to correct for orientation
|
||||
const Rotation rot = _frontend.get_orientation();
|
||||
_att_rotation.initialise();
|
||||
_use_att_rotation = false;
|
||||
if (rot != Rotation::ROTATION_NONE) {
|
||||
_att_rotation.rotate(rot);
|
||||
_att_rotation.invert();
|
||||
_use_att_rotation = true;
|
||||
}
|
||||
|
||||
Quaternion att_corrected = attitude;
|
||||
att_corrected *= _att_rotation;
|
||||
|
||||
// extract sensor's corrected yaw
|
||||
const float sens_yaw = att_corrected.get_euler_yaw();
|
||||
|
||||
// trim yaw by difference between ahrs and sensor yaw
|
||||
Vector3f angle_diff;
|
||||
ahrs_quat.angular_difference(att_corrected).to_axis_angle(angle_diff);
|
||||
_yaw_trim = angle_diff.z;
|
||||
gcs().send_text(MAV_SEVERITY_CRITICAL, "VisOdom: yaw shifted %d to %d deg",
|
||||
//(int)degrees(_yaw_trim - yaw_trim_orig),
|
||||
(int)degrees(_yaw_trim),
|
||||
(int)degrees(sens_yaw + _yaw_trim));
|
||||
|
||||
// convert _yaw_trim to _yaw_rotation to speed up processing later
|
||||
_yaw_rotation.from_euler(0.0f, 0.0f, _yaw_trim);
|
||||
|
||||
// calculate position with current rotation and correction
|
||||
Vector3f pos_orig = position;
|
||||
rotate_and_correct_position(pos_orig);
|
||||
|
||||
// create position rotation from yaw trim
|
||||
_use_pos_rotation = false;
|
||||
if (!is_zero(_yaw_trim)) {
|
||||
Matrix3f trim_matrix;
|
||||
_pos_rotation.from_euler(0.0f, 0.0f, _yaw_trim);
|
||||
_use_pos_rotation = true;
|
||||
}
|
||||
|
||||
// recalculate position with new rotation
|
||||
Vector3f pos_new = position;
|
||||
rotate_and_correct_position(pos_new);
|
||||
|
||||
// update position correction to remove change due to rotation
|
||||
_pos_correction += (pos_orig - pos_new);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
|
||||
bool AP_VisualOdom_Backend::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const
|
||||
{
|
||||
// exit immediately if no attitude to check
|
||||
if (!_have_attitude) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// check for unsupported orientation
|
||||
if (_error_orientation) {
|
||||
hal.util->snprintf(failure_msg, failure_msg_len, "check VISO_ORIENT parameter");
|
||||
return false;
|
||||
}
|
||||
|
||||
// get ahrs attitude
|
||||
Quaternion ahrs_quat;
|
||||
if (!AP::ahrs().get_quaternion(ahrs_quat)) {
|
||||
hal.util->snprintf(failure_msg, failure_msg_len, "VisualOdom waiting for AHRS attitude");
|
||||
return false;
|
||||
}
|
||||
|
||||
// get angular difference between AHRS and camera attitude
|
||||
Vector3f angle_diff;
|
||||
_attitude_last.angular_difference(ahrs_quat).to_axis_angle(angle_diff);
|
||||
|
||||
// check if roll and pitch is different by > 10deg (using NED so cannot determine whether roll or pitch specifically)
|
||||
const float rp_diff_deg = degrees(safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)));
|
||||
if (rp_diff_deg > 10.0f) {
|
||||
hal.util->snprintf(failure_msg, failure_msg_len, "VisualOdom roll/pitch diff %4.1f deg (>10)",(double)rp_diff_deg);
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if yaw is different by > 10deg
|
||||
const float yaw_diff_deg = degrees(fabsf(angle_diff.z));
|
||||
if (yaw_diff_deg > 10.0f) {
|
||||
hal.util->snprintf(failure_msg, failure_msg_len, "VisualOdom yaw diff %4.1f deg (>10)",(double)yaw_diff_deg);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -29,17 +29,16 @@ public:
|
||||
bool healthy() const;
|
||||
|
||||
// consume vision_position_delta mavlink messages
|
||||
virtual void handle_vision_position_delta_msg(const mavlink_message_t &msg) {};
|
||||
virtual void handle_vision_position_delta_msg(const mavlink_message_t &msg) = 0;
|
||||
|
||||
// general purpose methods to consume position estimate data and send to EKF
|
||||
// distances in meters, roll, pitch and yaw are in radians
|
||||
void handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude);
|
||||
// consume vision position estimate data and send to EKF. distances in meters
|
||||
virtual void handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude) = 0;
|
||||
|
||||
// calibrate camera attitude to align with vehicle's AHRS/EKF attitude
|
||||
void align_sensor_to_vehicle() { _align_camera = true; }
|
||||
// handle request to align camera's attitude with vehicle's AHRS/EKF attitude
|
||||
virtual void align_sensor_to_vehicle() {}
|
||||
|
||||
// arming check
|
||||
bool pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const;
|
||||
// arming check - by default no checks performed
|
||||
virtual bool pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { return true; }
|
||||
|
||||
protected:
|
||||
|
||||
@ -52,18 +51,6 @@ protected:
|
||||
// use sensor provided position and attitude to calculate rotation to align sensor with AHRS/EKF attitude
|
||||
bool align_sensor_to_vehicle(const Vector3f &position, const Quaternion &attitude);
|
||||
|
||||
AP_VisualOdom &_frontend; // reference to frontend
|
||||
|
||||
float _yaw_trim; // yaw angle trim (in radians) to align camera's yaw to ahrs/EKF's
|
||||
Quaternion _yaw_rotation; // earth-frame yaw rotation to align heading of sensor with vehicle. use when _yaw_trim is non-zero
|
||||
Quaternion _att_rotation; // body-frame rotation corresponding to ORIENT parameter. use when get_orientation != NONE
|
||||
Matrix3f _pos_rotation; // rotation to align position from sensor to earth frame. use when _use_pos_rotation is true
|
||||
Vector3f _pos_correction; // position correction that should be added to position reported from sensor
|
||||
bool _use_att_rotation; // true if _att_rotation should be applied to sensor's attitude data
|
||||
bool _use_pos_rotation; // true if _pos_rotation should be applied to sensor's position data
|
||||
bool _align_camera = true; // true if camera should be aligned to AHRS/EKF
|
||||
bool _have_attitude; // true if we have received an attitude from the camera (used for arming checks)
|
||||
bool _error_orientation; // true if the orientation is not supported
|
||||
Quaternion _attitude_last; // last attitude received from camera (used for arming checks)
|
||||
uint32_t _last_update_ms; // system time of last update from sensor (used by health checks)
|
||||
AP_VisualOdom &_frontend; // reference to frontend
|
||||
uint32_t _last_update_ms; // system time of last update from sensor (used by health checks)
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user