mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 18:38:28 -04:00
Quaternion: code cleanups and added comments
This commit is contained in:
parent
f5e5ccff6a
commit
8b37790bd1
@ -307,7 +307,9 @@ void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, V
|
||||
}
|
||||
|
||||
|
||||
// Function to compute one quaternion iteration including magnetometer
|
||||
// Function to update our gyro_bias drift estimate using the accelerometer
|
||||
// and magnetometer. This is a cut-down version of update_MARG(), but
|
||||
// without the quaternion update.
|
||||
void AP_Quaternion::update_drift(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag)
|
||||
{
|
||||
// local system variables
|
||||
@ -458,11 +460,6 @@ void AP_Quaternion::update(void)
|
||||
Vector3f gyro, accel;
|
||||
float deltat;
|
||||
|
||||
#ifdef DESKTOP_BUILD
|
||||
Quaternion q_saved = q;
|
||||
Vector3f bias_saved = gyro_bias;
|
||||
#endif
|
||||
|
||||
_imu->update();
|
||||
|
||||
deltat = _imu->get_delta_time();
|
||||
@ -513,11 +510,21 @@ void AP_Quaternion::update(void)
|
||||
accel.z += (gyro.y - gyro_bias.y) * veloc;
|
||||
}
|
||||
|
||||
#if 1
|
||||
_gyro_sum += gyro;
|
||||
_accel_sum += accel;
|
||||
_sum_count++;
|
||||
|
||||
/*
|
||||
The full Madgwick quaternion 'MARG' system assumes you get
|
||||
gyro, accel and magnetometer updates at the same rate. On
|
||||
APM we get them at very different rates, and re-calculating
|
||||
our drift due to the magnetometer in the fast loop is very
|
||||
wasteful of CPU.
|
||||
|
||||
Instead, we only update the gyro_bias vector when we get a
|
||||
new magnetometer point, and use the much simpler
|
||||
update_IMU() as the main quaternion update function.
|
||||
*/
|
||||
if (_compass != NULL && _compass->use_for_yaw() &&
|
||||
_compass->last_update != _compass_last_update &&
|
||||
_sum_count != 0) {
|
||||
@ -533,64 +540,28 @@ void AP_Quaternion::update(void)
|
||||
_compass_last_update = _compass->last_update;
|
||||
}
|
||||
|
||||
// step the quaternion solution
|
||||
// step the quaternion solution using just gyros and accels
|
||||
gyro -= gyro_bias;
|
||||
update_IMU(deltat, gyro, accel);
|
||||
#else
|
||||
if (_compass != NULL && _compass->use_for_yaw()) {
|
||||
// use new compass sample for drift correction
|
||||
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, - _compass->mag_z);
|
||||
update_MARG(deltat, gyro, accel, mag);
|
||||
} else {
|
||||
// step the quaternion without drift correction
|
||||
gyro -= gyro_bias;
|
||||
_gyro_sum += gyro;
|
||||
_accel_sum += accel;
|
||||
_sum_count++;
|
||||
update_IMU(deltat, gyro, accel);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef DESKTOP_BUILD
|
||||
if (q.is_nan()) {
|
||||
SITL_debug("QUAT NAN: deltat=%f roll=%f pitch=%f yaw=%f q0=[%f %f %f %f] q=[%f %f %f %f] a=[%f %f %f] g=(%f %f %f)\n",
|
||||
SITL_debug("QUAT NAN: deltat=%f roll=%f pitch=%f yaw=%f q=[%f %f %f %f] a=[%f %f %f] g=(%f %f %f)\n",
|
||||
deltat, roll, pitch, yaw,
|
||||
q_saved.q1, q_saved.q2, q_saved.q3, q_saved.q4,
|
||||
q.q1, q.q2, q.q3, q.q4,
|
||||
accel.x, accel.y, accel.z,
|
||||
gyro.x, gyro.y, gyro.z);
|
||||
q = q_saved;
|
||||
gyro_bias = bias_saved;
|
||||
update_IMU(deltat, gyro, accel);
|
||||
}
|
||||
#endif
|
||||
|
||||
// keep the corrected gyro for reporting
|
||||
_gyro_corrected = gyro;
|
||||
|
||||
// compute the Eulers
|
||||
float test = (SEq_1*SEq_3 - SEq_4*SEq_2);
|
||||
const float singularity = 0.499; // 86.3 degrees?
|
||||
if (test > singularity) {
|
||||
// singularity at south pole
|
||||
// this one is ok..
|
||||
yaw = 2.0 * atan2(SEq_4, SEq_1);
|
||||
pitch = ToRad(-90.0);
|
||||
roll = 0.0;
|
||||
} else if (test < -singularity) {
|
||||
// singularity at north pole
|
||||
// this one is invalid :( .. fix it.
|
||||
yaw = -2.0 * atan2(SEq_4, SEq_1);
|
||||
pitch = ToRad(90.0);
|
||||
roll = 0.0;
|
||||
} else {
|
||||
roll = -(atan2(2.0*(SEq_1*SEq_2 + SEq_3*SEq_4),
|
||||
1 - 2.0*(SEq_2*SEq_2 + SEq_3*SEq_3)));
|
||||
pitch = -safe_asin(2.0*test);
|
||||
yaw = atan2(2.0*(SEq_1*SEq_4 + SEq_2*SEq_3),
|
||||
1 - 2.0*(SEq_3*SEq_3 + SEq_4*SEq_4));
|
||||
}
|
||||
// calculate our euler angles for high level control and navigation
|
||||
euler_from_quaternion(q, &roll, &pitch, &yaw);
|
||||
|
||||
// the code above assumes zero magnetic declination, so offset
|
||||
// the yaw here
|
||||
if (_compass != NULL) {
|
||||
yaw += _compass->get_declination();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user