Added alternate RC_Channel class.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@1253 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
james.goppert 2010-12-25 00:06:37 +00:00
parent c63973e313
commit 8a6df23405
3 changed files with 473 additions and 0 deletions

View File

@ -0,0 +1,193 @@
/*
RC_ChannelB.cpp - Radio library for Arduino
Code by Jason Short. DIYDrones.com
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include <math.h>
#include <avr/eeprom.h>
#include "WProgram.h"
#include "RC_ChannelB.h"
#define ANGLE 0
#define RANGE 1
// setup the control preferences
void
RC_ChannelB::set_range(int low, int high)
{
_type = RANGE;
_high = high;
_low = low;
}
void
RC_ChannelB::set_angle(int angle)
{
_type = ANGLE;
_high = angle;
}
void
RC_ChannelB::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
void
RC_ChannelB::set_filter(bool filter)
{
_filter = filter;
}
// call after first read
void
RC_ChannelB::trim()
{
radio_trim = radio_in;
}
// read input from APM_RC - create a control_in value
void
RC_ChannelB::set_pwm(int pwm)
{
//Serial.print(pwm,DEC);
if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = ((pwm + radio_in) >> 1); // Small filtering
}else{
radio_in = pwm;
}
if(_type == RANGE){
//Serial.print("range ");
control_in = pwm_to_range();
control_in = (control_in < dead_zone) ? 0 : control_in;
}else{
control_in = pwm_to_angle();
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
}
}
int
RC_ChannelB::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
RC_ChannelB::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
RC_ChannelB::calc_pwm(void)
{
if(_type == RANGE){
pwm_out = range_to_pwm();
}else{
pwm_out = angle_to_pwm();
}
radio_out = pwm_out + radio_min;
}
// ------------------------------------------
void
RC_ChannelB::load_eeprom(void)
{
radio_min = eeprom_read_word((uint16_t *) _address);
radio_max = eeprom_read_word((uint16_t *) (_address + 2));
radio_trim = eeprom_read_word((uint16_t *) (_address + 4));
}
void
RC_ChannelB::save_eeprom(void)
{
eeprom_write_word((uint16_t *) _address, radio_min);
eeprom_write_word((uint16_t *) (_address + 2), radio_max);
eeprom_write_word((uint16_t *) (_address + 4), radio_trim);
}
// ------------------------------------------
void
RC_ChannelB::save_trim(void)
{
eeprom_write_word((uint16_t *) (_address + 4), radio_trim);
}
// ------------------------------------------
void
RC_ChannelB::update_min_max()
{
radio_min = min(radio_min, radio_in);
radio_max = max(radio_max, radio_in);
}
// ------------------------------------------
int16_t
RC_ChannelB::pwm_to_angle()
{
if(radio_in < radio_trim)
return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min));
else
return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim));
}
float
RC_ChannelB::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
RC_ChannelB::norm_output()
{
if(radio_out < radio_trim)
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
else
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
}
int16_t
RC_ChannelB::angle_to_pwm()
{
if(servo_out < 0)
return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim));
else
return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min));
}
// ------------------------------------------
int16_t
RC_ChannelB::pwm_to_range()
{
return _reverse * (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
}
int16_t
RC_ChannelB::range_to_pwm()
{
return (((float)servo_out / (float)(_high - _low)) * (float)(radio_max - radio_min));
}

View File

@ -0,0 +1,105 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file RC_ChannelB.h
/// @brief RC_ChannelB manager, with EEPROM-backed storage of constants.
#ifndef RC_ChannelB_h
#define RC_ChannelB_h
#include <stdint.h>
/// @class RC_ChannelB
/// @brief Object managing one RC channel
class RC_ChannelB{
public:
/// Constructor
///
/// A RC_ChannelB constructed in this fashion does not support save/restore.
///
RC_ChannelB() :
_address(0)
{}
/// Constructor
///
/// @param address EEPROM base address at which RC_ChannelB parameters
/// are stored. Zero if the RC_ChannelB does not support
/// save/restore.
///
RC_ChannelB(uint16_t address) :
_address(address),
_high(1),
_filter(true)
{}
// setup min and max radio values in CLI
void update_min_max();
// startup
void load_eeprom(void);
void save_eeprom(void);
void save_trim(void);
void set_filter(bool filter);
// setup the control preferences
void set_range(int low, int high);
void set_angle(int angle);
void set_reverse(bool reverse);
// read input from APM_RC - create a control_in value
void set_pwm(int pwm);
// pwm is stored here
int16_t radio_in;
// call after first set_pwm
void trim();
// did our read come in 50µs below the min?
bool get_failsafe(void);
// value generated from PWM
int16_t control_in;
int16_t dead_zone; // used to keep noise down and create a dead zone.
int control_mix(float value);
// current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100
int16_t servo_out;
// generate PWM from servo_out value
void calc_pwm(void);
// PWM is without the offset from radio_min
int16_t pwm_out;
int16_t radio_out;
int16_t radio_min;
int16_t radio_trim;
int16_t radio_max;
// includes offset from PWM
//int16_t get_radio_out(void);
int16_t pwm_to_angle();
float norm_input();
float norm_output();
int16_t angle_to_pwm();
int16_t pwm_to_range();
int16_t range_to_pwm();
private:
bool _filter;
int8_t _reverse;
int16_t _address; ///< EEPROM address for save/restore of P/I/D
bool _type;
int16_t _high;
int16_t _low;
};
#endif

View File

@ -0,0 +1,175 @@
/*
Example of RC_Channel library.
Code by Jason Short. 2010
DIYDrones.com
*/
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <RC_Channel.h> // ArduPilot Mega RC Library
#define EE_RADIO_1 0x00 // all gains stored from here
#define EE_RADIO_2 0x06 // all gains stored from here
#define EE_RADIO_3 0x0C // all gains stored from here
#define EE_RADIO_4 0x12 // all gains stored from here
#define EE_RADIO_5 0x18 // all gains stored from here
#define EE_RADIO_6 0x1E // all gains stored from here
#define EE_RADIO_7 0x24 // all gains stored from here
#define EE_RADIO_8 0x2A // all gains stored from here
RC_Channel rc_1(EE_RADIO_1);
RC_Channel rc_2(EE_RADIO_2);
RC_Channel rc_3(EE_RADIO_3);
RC_Channel rc_4(EE_RADIO_4);
RC_Channel rc_5(EE_RADIO_5);
RC_Channel rc_6(EE_RADIO_6);
RC_Channel rc_7(EE_RADIO_7);
RC_Channel rc_8(EE_RADIO_8);
#define CH_1 0
#define CH_2 1
#define CH_3 2
#define CH_4 3
#define CH_5 4
#define CH_6 5
#define CH_7 6
#define CH_8 7
void setup()
{
Serial.begin(38400);
Serial.println("ArduPilot RC Channel test");
APM_RC.Init(); // APM Radio initialization
delay(1000);
// setup radio
// read eepom or set manually
/*
rc_1.radio_min = 1100;
rc_1.radio_max = 1900;
rc_2.radio_min = 1100;
rc_2.radio_max = 1900;
rc_3.radio_min = 1100;
rc_3.radio_max = 1900;
rc_4.radio_min = 1100;
rc_4.radio_max = 1900;
*/
rc_1.load_eeprom();
rc_2.load_eeprom();
rc_3.load_eeprom();
rc_4.load_eeprom();
rc_5.load_eeprom();
rc_6.load_eeprom();
rc_7.load_eeprom();
rc_8.load_eeprom();
print_radio_values();
// set type of output, symmetrical angles or a number range;
rc_1.set_angle(4500);
rc_2.set_angle(4500);
rc_3.set_range(0,1000);
rc_4.set_angle(3000);
rc_5.set_range(0,1000);
rc_6.set_range(0,1000);
rc_7.set_range(0,1000);
rc_8.set_range(0,1000);
// set midpoint value
rc_1.set_pwm(APM_RC.InputCh(CH_1));
rc_2.set_pwm(APM_RC.InputCh(CH_2));
rc_4.set_pwm(APM_RC.InputCh(CH_4));
rc_1.trim();
rc_2.trim();
rc_4.trim();
}
void loop()
{
delay(20);
rc_1.set_pwm(APM_RC.InputCh(CH_1));
rc_2.set_pwm(APM_RC.InputCh(CH_2));
rc_3.set_pwm(APM_RC.InputCh(CH_3));
rc_4.set_pwm(APM_RC.InputCh(CH_4));
rc_5.set_pwm(APM_RC.InputCh(CH_5));
rc_6.set_pwm(APM_RC.InputCh(CH_6));
rc_7.set_pwm(APM_RC.InputCh(CH_7));
rc_8.set_pwm(APM_RC.InputCh(CH_8));
print_pwm();
}
void print_pwm()
{
Serial.print("ch1 ");
Serial.print(rc_1.control_in, DEC);
Serial.print("\tch2: ");
Serial.print(rc_2.control_in, DEC);
Serial.print("\tch3 :");
Serial.print(rc_3.control_in, DEC);
Serial.print("\tch4 :");
Serial.print(rc_4.control_in, DEC);
Serial.print("\tch5 :");
Serial.print(rc_5.control_in, DEC);
Serial.print("\tch6 :");
Serial.print(rc_6.control_in, DEC);
Serial.print("\tch7 :");
Serial.print(rc_7.control_in, DEC);
Serial.print("\tch8 :");
Serial.println(rc_8.control_in, DEC);
}
void
print_radio_values()
{
Serial.print("CH1: ");
Serial.print(rc_1.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_1.radio_max, DEC);
Serial.print("CH2: ");
Serial.print(rc_2.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_2.radio_max, DEC);
Serial.print("CH3: ");
Serial.print(rc_3.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_3.radio_max, DEC);
Serial.print("CH4: ");
Serial.print(rc_4.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_4.radio_max, DEC);
Serial.print("CH5: ");
Serial.print(rc_5.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_5.radio_max, DEC);
Serial.print("CH6: ");
Serial.print(rc_6.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_6.radio_max, DEC);
Serial.print("CH7: ");
Serial.print(rc_7.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_7.radio_max, DEC);
Serial.print("CH8: ");
Serial.print(rc_8.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_8.radio_max, DEC);
}