ADC: re-work for ADC code for full resolution and accurate timing

this changes the ADC code to return the full resolution of the
sensors. It also adds a new Ch6() interface that returns 6 channels at
once, so the IMU can read 3 accelerometers and 3 gyros at once, and
get the exact time that the values were accumulated over
This commit is contained in:
Andrew Tridgell 2011-09-15 13:01:45 +10:00
parent d34f8ceca6
commit 8a31af801f
5 changed files with 133 additions and 60 deletions

View File

@ -1,6 +1,8 @@
#ifndef AP_ADC_H #ifndef AP_ADC_H
#define AP_ADC_H #define AP_ADC_H
#include <stdint.h>
/* /*
AP_ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega AP_ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega
Code by James Goppert. DIYDrones.com Code by James Goppert. DIYDrones.com
@ -13,7 +15,7 @@
Methods: Methods:
Init() : Initialization of ADC. (interrupts etc) Init() : Initialization of ADC. (interrupts etc)
Ch(ch_num) : Return the ADC channel value Ch(ch_num) : Return the ADC channel value
Ch6(channel_numbers, result) : Return 6 ADC channel values
*/ */
class AP_ADC class AP_ADC
@ -21,8 +23,20 @@ class AP_ADC
public: public:
AP_ADC() {}; // Constructor AP_ADC() {}; // Constructor
virtual void Init() {}; virtual void Init() {};
virtual int Ch(unsigned char ch_num) = 0;
virtual int Ch_raw(unsigned char ch_num) = 0; /* read one channel value */
virtual uint16_t Ch(uint8_t ch_num) = 0;
/* read 6 channels values as a set, used by IMU for 3 gyros
and 3 accelerometeres.
Pass in an array of 6 channel numbers and results are
returned in result[]
The function returns the amount of time that the returned
value has been averaged over, in 2.5 millisecond units
*/
virtual uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result) = 0;
private: private:
}; };

View File

@ -44,6 +44,7 @@
extern "C" { extern "C" {
// AVR LibC Includes // AVR LibC Includes
#include <inttypes.h> #include <inttypes.h>
#include <stdint.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include "WConstants.h" #include "WConstants.h"
} }
@ -53,8 +54,12 @@ extern "C" {
// Commands for reading ADC channels on ADS7844 // Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 }; static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
static volatile uint16_t _filter[8][ADC_FILTER_SIZE];
static volatile uint8_t _filter_index; // the sum of the values since last read
static volatile uint32_t _sum[8];
// how many values we've accumulated since last read
static volatile uint16_t _count[8];
static unsigned char ADC_SPI_transfer(unsigned char data) static unsigned char ADC_SPI_transfer(unsigned char data)
{ {
@ -72,32 +77,33 @@ static unsigned char ADC_SPI_transfer(unsigned char data)
ISR (TIMER2_OVF_vect) ISR (TIMER2_OVF_vect)
{ {
uint8_t ch; uint8_t ch;
uint16_t adc_tmp;
//bit_set(PORTL,6); // To test performance //bit_set(PORTL,6); // To test performance
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4) bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
for (ch = 0; ch < 8; ch++){ for (ch = 0; ch < 8; ch++){
adc_tmp = ADC_SPI_transfer(0) << 8; // Read first byte uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8; // Read first byte
adc_tmp |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command adc_tmp |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
// Fill our Moving average filter _count[ch]++;
_filter[ch][_filter_index] = adc_tmp >> 3; if (_count[ch] == 0) {
// overflow ... shouldn't happen too often
// unless we're just not using the
// channel. Notice that we overflow the count
// to 1 here, not zero, as otherwise the
// reader below could get a division by zero
_sum[ch] = 0;
_count[ch] = 1;
}
_sum[ch] += adc_tmp;
} }
// increment our filter bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
_filter_index++; //bit_clear(PORTL,6); // To test performance
TCNT2 = 104; // 400Hz interrupt
// loop our filter
if(_filter_index == ADC_FILTER_SIZE)
_filter_index = 0;
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
//bit_clear(PORTL,6); // To test performance
TCNT2 = 104; // 400 Hz
} }
@ -123,6 +129,16 @@ void AP_ADC_ADS7844::Init(void)
// Set Baud rate // Set Baud rate
UBRR2 = 2; // SPI clock running at 2.6MHz UBRR2 = 2; // SPI clock running at 2.6MHz
// get an initial value for each channel. This ensures
// _count[] is never zero
for (uint8_t i=0; i<8; i++) {
uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8;
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
_count[i] = 1;
_sum[i] = adc_tmp;
}
// Enable Timer2 Overflow interrupt to capture ADC data // Enable Timer2 Overflow interrupt to capture ADC data
TIMSK2 = 0; // Disable interrupts TIMSK2 = 0; // Disable interrupts
@ -134,31 +150,60 @@ void AP_ADC_ADS7844::Init(void)
} }
// Read one channel value // Read one channel value
int AP_ADC_ADS7844::Ch(unsigned char ch_num) uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num)
{ {
uint16_t result = 0; uint16_t count;
uint32_t sum;
//while(adc_counter[ch_num] < 2) { } // Wait for at least 2 samples in accumlator // ensure we have at least one value
while (_count[ch_num] == 0) /* noop */ ;
// stop interrupts // grab the value with interrupts disabled, and clear the count
cli(); cli();
count = _count[ch_num];
// sum our filter sum = _sum[ch_num];
for(uint8_t i = 0; i < ADC_FILTER_SIZE; i++){ _count[ch_num] = 0;
result += _filter[ch_num][i]; _sum[ch_num] = 0;
}
// resume interrupts
sei(); sei();
// average our sampels return sum/count;
result /= ADC_FILTER_SIZE;
return(result);
} }
// Read one channel value // Read 6 channel values
int AP_ADC_ADS7844::Ch_raw(unsigned char ch_num) // this assumes that the counts for all of the 6 channels are
// equal. This will only be true if we always consistently access a
// sensor by either Ch6() or Ch() and never mix them. If you mix them
// then you will get very strange results
uint16_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
{ {
return _filter[ch_num][_filter_index]; // close enough uint16_t count[6];
uint32_t sum[6];
uint8_t i;
// ensure we have at least one value
for (i=0; i<6; i++) {
while (_count[channel_numbers[i]] == 0) /* noop */;
}
// grab the values with interrupts disabled, and clear the counts
cli();
for (i=0; i<6; i++) {
count[i] = _count[channel_numbers[i]];
sum[i] = _sum[channel_numbers[i]];
_count[channel_numbers[i]] = 0;
_sum[channel_numbers[i]] = 0;
}
sei();
// calculate averages. We keep this out of the cli region
// to prevent us stalling the ISR while doing the
// division. That costs us 36 bytes of stack, but I think its
// worth it.
for (i=0; i<6; i++) {
result[i] = sum[i] / count[i];
}
// this assumes the count in all channels is equal, which will
// be true if the callers are using the interface consistently
return count[0];
} }

View File

@ -19,8 +19,12 @@ class AP_ADC_ADS7844 : public AP_ADC
public: public:
AP_ADC_ADS7844(); // Constructor AP_ADC_ADS7844(); // Constructor
void Init(); void Init();
int Ch(unsigned char ch_num);
int Ch_raw(unsigned char ch_num); // Read 1 sensor value
uint16_t Ch(unsigned char ch_num);
// Read 6 sensors at once
uint16_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
private: private:
}; };

View File

@ -35,6 +35,8 @@ AP_ADC_HIL::AP_ADC_HIL()
// set diff press and temp to zero // set diff press and temp to zero
setGyroTemp(0); setGyroTemp(0);
setPressure(0); setPressure(0);
last_hil_time = millis();
} }
void AP_ADC_HIL::Init(void) void AP_ADC_HIL::Init(void)
@ -42,14 +44,18 @@ void AP_ADC_HIL::Init(void)
} }
// Read one channel value // Read one channel value
int AP_ADC_HIL::Ch(unsigned char ch_num) uint16_t AP_ADC_HIL::Ch(unsigned char ch_num)
{ {
return adcValue[ch_num]; return adcValue[ch_num];
} }
// Read one channel value
int AP_ADC_HIL::Ch_raw(unsigned char ch_num) // Read 6 channel values
uint16_t AP_ADC_HIL::Ch6(const uint8_t *channel_numbers, uint16_t *result)
{ {
return adcValue[ch_num]; for (uint8_t i=0; i<6; i++) {
result[i] = Ch(channel_numbers[i]);
}
return ((millis() - last_hil_time)*2)/5;
} }
// Set one channel value // Set one channel value

View File

@ -32,10 +32,11 @@ class AP_ADC_HIL : public AP_ADC
/// ///
// Read the sensor, part of public AP_ADC interface // Read the sensor, part of public AP_ADC interface
int Ch(unsigned char ch_num); uint16_t Ch(unsigned char ch_num);
/// ///
// Read the sensor, part of public AP_ADC interface // Read 6 sensors at once
int Ch_raw(unsigned char ch_num); uint16_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
/// ///
// Set the adc raw values given the current rotations rates, // Set the adc raw values given the current rotations rates,
@ -49,16 +50,19 @@ class AP_ADC_HIL : public AP_ADC
// The raw adc array // The raw adc array
uint16_t adcValue[8]; uint16_t adcValue[8];
// the time in milliseconds when we last got a HIL update
uint32_t last_hil_time;
/// ///
// sensor constants // sensor constants
// constants declared in cpp file // constants declared in cpp file
// @see AP_ADC_HIL.cpp // @see AP_ADC_HIL.cpp
static const uint8_t sensors[6]; static const uint8_t sensors[6];
static const float gyroBias[3]; static const float gyroBias[3];
static const float gyroScale[3]; static const float gyroScale[3];
static const float accelBias[3]; static const float accelBias[3];
static const float accelScale[3]; static const float accelScale[3];
static const int8_t sensorSign[6]; static const int8_t sensorSign[6];
/// ///
// gyro set function // gyro set function