AP_Math: cleanup position control APIs

use Vector2 for xy, float for z
This commit is contained in:
Andrew Tridgell 2021-06-21 17:26:40 +10:00
parent fe4abc521a
commit 86f09cad09
2 changed files with 30 additions and 163 deletions

View File

@ -37,13 +37,6 @@ void update_vel_accel(float& vel, float accel, float dt, float limit)
}
}
// update_vel_accel_z - single axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the velocity is not moved in the direction of limit if limit is not set to zero
void update_vel_accel_z(Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit)
{
update_vel_accel(vel.z, accel.z, dt, limit.z);
}
// update_pos_vel_accel - single axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the position and velocity is not moved in the direction of limit if limit is not set to zero
void update_pos_vel_accel(float& pos, float& vel, float accel, float dt, float limit)
@ -57,16 +50,9 @@ void update_pos_vel_accel(float& pos, float& vel, float accel, float dt, float l
update_vel_accel(vel, accel, dt, limit);
}
// update_pos_vel_accel_z - single axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the position and velocity is not moved in the direction of limit if limit is not set to zero
void update_pos_vel_accel_z(Vector3f& pos, Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit)
{
update_pos_vel_accel(pos.z, vel.z, accel.z, dt, limit.z);
}
// update_vel_accel - dual axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the velocity is not moved in the direction of limit if limit is not set to zero
void update_vel_accel(Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit)
void update_vel_accel_xy(Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit)
{
// increase velocity by acceleration * dt if it does not increase error when limited.
Vector2f delta_vel = accel * dt;
@ -80,22 +66,9 @@ void update_vel_accel(Vector2f& vel, const Vector2f& accel, float dt, Vector2f l
vel += delta_vel;
}
// update_vel_accel_xy - dual axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the velocity is not moved in the direction of limit if limit is not set to zero
// This function only updates the x and y axis leaving the z axis unchanged.
void update_vel_accel_xy(Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit)
{
Vector2f vel_2f {vel.x, vel.y};
const Vector2f accel_2f {accel.x, accel.y};
const Vector2f limit_2f {limit.x, limit.y};
update_vel_accel(vel_2f, accel_2f, dt, limit_2f);
vel.x = vel_2f.x;
vel.y = vel_2f.y;
}
// update_pos_vel_accel - dual axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the position and velocity is not moved in the direction of limit if limit is not set to zero
void update_pos_vel_accel(Vector2f& pos, Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit)
void update_pos_vel_accel_xy(Vector2f& pos, Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit)
{
// move position and velocity forward by dt.
Vector2f delta_pos = vel * dt + accel * 0.5f * sq(dt);
@ -110,23 +83,7 @@ void update_pos_vel_accel(Vector2f& pos, Vector2f& vel, const Vector2f& accel, f
pos += delta_pos;
update_vel_accel(vel, accel, dt, limit);
}
// update_pos_vel_accel_xy - dual axis projection of position and velocity, pos and vel, forwards in time based on a time step of dt and acceleration of accel.
// the position and velocity is not moved in the direction of limit if limit is not set to zero
// This function only updates the x and y axis leaving the z axis unchanged.
void update_pos_vel_accel_xy(Vector3f& pos, Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit)
{
Vector2f pos_2f {pos.x, pos.y};
Vector2f vel_2f {vel.x, vel.y};
const Vector2f accel_2f {accel.x, accel.y};
const Vector2f limit_2f {limit.x, limit.y};
update_pos_vel_accel(pos_2f, vel_2f, accel_2f, dt, limit_2f);
pos.x = pos_2f.x;
pos.y = pos_2f.y;
vel.x = vel_2f.x;
vel.y = vel_2f.y;
update_vel_accel_xy(vel, accel, dt, limit);
}
/* shape_accel calculates a jerk limited path from the current acceleration to an input acceleration.
@ -223,11 +180,11 @@ void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
The accel_max limit can be removed by setting it to zero.
*/
void shape_vel_accel(float vel_input, float accel_input,
float vel, float& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt)
void shape_vel_accel(float &vel_input, float accel_input,
float vel, float& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt)
{
// sanity check tc
if (!is_positive(tc)) {
@ -254,19 +211,6 @@ void shape_vel_accel(float vel_input, float accel_input,
shape_accel(accel_target, accel, accel_min, accel_max, tc, dt);
}
void shape_vel_accel_z(const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& vel, Vector3f& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt)
{
shape_vel_accel(vel_input.z, accel_input.z,
vel.z, accel.z,
vel_min, vel_max,
accel_min, accel_max,
tc, dt);
}
/* shape_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
The kinematic path is constrained by:
@ -280,8 +224,8 @@ void shape_vel_accel_z(const Vector3f& vel_input, const Vector3f& accel_input,
This function operates on the x and y axis of both Vector2f or Vector3f inputs.
The accel_max limit can be removed by setting it to zero.
*/
void shape_vel_accel_xy(Vector2f vel_input, const Vector2f& accel_input,
const Vector2f& vel, Vector2f& accel, float vel_max, float accel_max, float tc, float dt)
void shape_vel_accel_xy(Vector2f &vel_input, const Vector2f& accel_input,
const Vector2f& vel, Vector2f& accel, float vel_max, float accel_max, float tc, float dt)
{
// sanity check tc
if (!is_positive(tc)) {
@ -308,19 +252,6 @@ void shape_vel_accel_xy(Vector2f vel_input, const Vector2f& accel_input,
shape_accel_xy(accel_target, accel, accel_max, tc, dt);
}
void shape_vel_accel_xy(const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& vel, Vector3f& accel, float vel_max, float accel_max, float tc, float dt)
{
Vector2f vel_input_2f {vel_input.x, vel_input.y};
const Vector2f accel_input_2f {accel_input.x, accel_input.y};
const Vector2f vel_2f {vel.x, vel.y};
Vector2f accel_2f {accel.x, accel.y};
shape_vel_accel_xy(vel_input_2f, accel_input_2f, vel_2f, accel_2f, vel_max, accel_max, tc, dt);
accel.x = accel_2f.x;
accel.y = accel_2f.y;
}
/* shape_pos_vel_accel calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
The kinematic path is constrained by :
@ -333,10 +264,10 @@ void shape_vel_accel_xy(const Vector3f& vel_input, const Vector3f& accel_input,
The function alters the input position to be the closest position that the system could reach zero acceleration in the minimum time.
The vel_max, vel_correction_max, and accel_max limits can be removed by setting the desired limit to zero.
*/
void shape_pos_vel_accel(float pos_input, float vel_input, float accel_input,
float pos, float vel, float& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt)
void shape_pos_vel_accel(float &pos_input, float vel_input, float accel_input,
float pos, float vel, float& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt)
{
// sanity check tc
if (!is_positive(tc)) {
@ -364,18 +295,6 @@ void shape_pos_vel_accel(float pos_input, float vel_input, float accel_input,
shape_vel_accel(vel_target, accel_input, vel, accel, vel_min, vel_max, accel_min, accel_max, tc, dt);
}
void shape_pos_vel_accel_z(const Vector3f& pos_input, const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& pos, const Vector3f& vel, Vector3f& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt)
{
shape_pos_vel_accel(pos_input.z, vel_input.z, accel_input.z,
pos.z, vel.z, accel.z,
vel_correction_max, vel_min, vel_max,
accel_min, accel_max,
tc, dt);
}
/* shape_pos_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
The kinematic path is constrained by:
@ -418,36 +337,6 @@ void shape_pos_vel_accel_xy(const Vector2f& pos_input, const Vector2f& vel_input
shape_vel_accel_xy(vel_target, accel_input, vel, accel, vel_max, accel_max, tc, dt);
}
/* shape_pos_vel_accel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
The kinematic path is constrained by:
vel_max : maximum velocity
accel_max : maximum acceleration
tc : time constant
The time constant defines the acceleration error decay in the kinematic path as the system approaches constant acceleration.
The time constant also defines the time taken to achieve the maximum acceleration.
The time constant must be positive.
The function alters the input position to be the closest position that the system could reach zero acceleration in the minimum time.
This function operates only on the x and y axis of the Vector2f or Vector3f inputs.
The vel_max, vel_correction_max, and accel_max limits can be removed by setting the desired limit to zero.
*/
void shape_pos_vel_accel_xy(const Vector3f& pos_input, const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& pos, const Vector3f& vel, Vector3f& accel,
float vel_max, float vel_correction_max, float accel_max, float tc, float dt)
{
const Vector2f pos_input_2f {pos_input.x, pos_input.y};
const Vector2f vel_input_2f {vel_input.x, vel_input.y};
const Vector2f accel_input_2f {accel_input.x, accel_input.y};
const Vector2f pos_2f {pos.x, pos.y};
const Vector2f vel_2f {vel.x, vel.y};
Vector2f accel_2f {accel.x, accel.y};
shape_pos_vel_accel_xy(pos_input_2f, vel_input_2f, accel_input_2f,
pos_2f, vel_2f, accel_2f, vel_max, vel_correction_max, accel_max, tc, dt);
accel.x = accel_2f.x;
accel.y = accel_2f.y;
}
// proportional controller with piecewise sqrt sections to constrain second derivative
float sqrt_controller(float error, float p, float second_ord_lim, float dt)
{

View File

@ -7,20 +7,16 @@
// update_vel_accel projects the velocity, vel, forward in time based on a time step of dt and acceleration of accel.
// update_vel_accel - single axis projection.
void update_vel_accel(float& vel, float accel, float dt, float limit);
void update_vel_accel_z(Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit);
// update_vel_accel projects the velocity, vel, forward in time based on a time step of dt and acceleration of accel.
// update_vel_accel - single axis projection.
void update_pos_vel_accel(float& pos, float& vel, float accel, float dt, float limit);
void update_pos_vel_accel_z(Vector3f& pos, Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit);
// update_pos_vel_accel_xy - dual axis projection operating on the x, y axis of Vector2f or Vector3f inputs.
void update_vel_accel(Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit);
void update_vel_accel_xy(Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit);
void update_vel_accel_xy(Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit);
// update_pos_vel_accel_xy - dual axis projection operating on the x, y axis of Vector2f or Vector3f inputs.
void update_pos_vel_accel(Vector2f& pos, Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit);
void update_pos_vel_accel_xy(Vector3f& pos, Vector3f& vel, const Vector3f& accel, float dt, Vector3f limit);
void update_pos_vel_accel_xy(Vector2f& pos, Vector2f& vel, const Vector2f& accel, float dt, Vector2f limit);
/* shape_accel calculates a jerk limited path from the current acceleration to an input acceleration.
The function takes the current acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
@ -33,11 +29,11 @@ void update_pos_vel_accel_xy(Vector3f& pos, Vector3f& vel, const Vector3f& accel
The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
*/
void shape_accel(float accel_input, float& accel,
float accel_min, float accel_max,
float tc, float dt);
float accel_min, float accel_max,
float tc, float dt);
void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
float accel_max, float tc, float dt);
float accel_max, float tc, float dt);
/* shape_vel calculates a jerk limited path from the current velocity and acceleration to an input velocity.
The function takes the current velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
@ -50,17 +46,11 @@ void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
The time constant must be positive.
The function alters the input velocity to be the velocity that the system could reach zero acceleration in the minimum time.
*/
void shape_vel_accel(float vel_input, float accel_input,
float vel, float& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt);
void shape_vel_accel_z(const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& vel, Vector3f& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt);
void shape_vel_accel(float &vel_input, const float accel_input,
float vel, float& accel,
float vel_min, float vel_max,
float accel_min, float accel_max,
float tc, float dt);
/* shape_vel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
@ -75,11 +65,8 @@ void shape_vel_accel_z(const Vector3f& vel_input, const Vector3f& accel_input,
This function operates on the x and y axis of both Vector2f or Vector3f inputs.
The accel_max limit can be removed by setting it to zero.
*/
void shape_vel_accel_xy(Vector2f vel_input, const Vector2f& accel_input,
const Vector2f& vel, Vector2f& accel, float vel_max, float accel_max, float tc, float dt);
void shape_vel_accel_xy(const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& vel, Vector3f& accel, float vel_max, float accel_max, float tc, float dt);
void shape_vel_accel_xy(Vector2f &vel_input, const Vector2f& accel_input,
const Vector2f& vel, Vector2f& accel, float vel_max, float accel_max, float tc, float dt);
/* shape_pos_vel calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
@ -92,15 +79,10 @@ void shape_vel_accel_xy(const Vector3f& vel_input, const Vector3f& accel_input,
The time constant must be positive.
The function alters the input position to be the closest position that the system could reach zero acceleration in the minimum time.
*/
void shape_pos_vel_accel(float pos_input, float vel_input, float accel_input,
float pos, float vel, float& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt);
void shape_pos_vel_accel_z(const Vector3f& pos_input, const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& pos, const Vector3f& vel, Vector3f& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt);
void shape_pos_vel_accel(float &pos_input, const float vel_input, const float accel_input,
float pos, float vel, float& accel,
float vel_correction_max, float vel_min, float vel_max,
float accel_min, float accel_max, float tc, float dt);
/* shape_pos_vel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
@ -119,10 +101,6 @@ void shape_pos_vel_accel_xy(const Vector2f& pos_input, const Vector2f& vel_input
const Vector2f& pos, const Vector2f& vel, Vector2f& accel,
float vel_correction_max, float vel_max, float accel_max, float tc, float dt);
void shape_pos_vel_accel_xy(const Vector3f& pos_input, const Vector3f& vel_input, const Vector3f& accel_input,
const Vector3f& pos, const Vector3f& vel, Vector3f& accel,
float vel_max, float vel_correction_max, float accel_max, float tc, float dt);
// proportional controller with piecewise sqrt sections to constrain second derivative
float sqrt_controller(float error, float p, float second_ord_lim, float dt);