WPNav: add acceleration parameter

WP_ACCEL added to allow user control of acceleration during missions.
Loiter acceleration made to be half of loiter max speed
This commit is contained in:
Randy Mackay 2013-06-16 11:39:54 +09:00
parent 069d93444f
commit 7c5d96385e
2 changed files with 45 additions and 22 deletions

View File

@ -10,7 +10,7 @@ const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// @Param: SPEED
// @DisplayName: Waypoint Horizontal Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission
// @Units: Centimeters/Second
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
@ -19,7 +19,7 @@ const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// @Param: RADIUS
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit.
// @Units: Centimeters
// @Units: cm
// @Range: 100 1000
// @Increment: 1
// @User: Standard
@ -28,7 +28,7 @@ const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// @Param: SPEED_UP
// @DisplayName: Waypoint Climb Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission
// @Units: Centimeters/Second
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
@ -37,7 +37,7 @@ const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// @Param: SPEED_DN
// @DisplayName: Waypoint Descent Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission
// @Units: Centimeters/Second
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
@ -46,12 +46,21 @@ const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// @Param: LOIT_SPEED
// @DisplayName: Loiter Horizontal Maximum Speed
// @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode
// @Units: Centimeters/Second
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED),
// @Param: ACCEL
// @DisplayName: Waypoint Acceleration
// @Description: Defines the horizontal acceleration in cm/s/s used during missions
// @Units: cm/s/s
// @Range: 0 980
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION),
AP_GROUPEND
};
@ -81,6 +90,7 @@ AC_WPNav::AC_WPNav(AP_InertialNav* inav, AP_AHRS* ahrs, APM_PI* pid_pos_lat, APM
_vel_last(0,0,0),
_lean_angle_max(MAX_LEAN_ANGLE),
_loiter_leash(WPNAV_MIN_LEASH_LENGTH),
_loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX),
_wp_leash_xy(WPNAV_MIN_LEASH_LENGTH),
_wp_leash_z(WPNAV_MIN_LEASH_LENGTH),
_track_accel(0),
@ -112,23 +122,23 @@ void AC_WPNav::get_stopping_point(const Vector3f& position, const Vector3f& velo
// calculate current velocity
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y);
// avoid divide by zero by using current position if the velocity is below 10cm/s or kP is very low
if (vel_total < 10.0f || kP <= 0.0f) {
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) {
target = position;
return;
}
// calculate point at which velocity switches from linear to sqrt
linear_velocity = WPNAV_ACCELERATION/kP;
linear_velocity = _wp_accel_cms/kP;
// calculate distance within which we can stop
if (vel_total < linear_velocity) {
target_dist = vel_total/kP;
} else {
linear_distance = WPNAV_ACCELERATION/(2*kP*kP);
target_dist = linear_distance + (vel_total*vel_total)/(2*WPNAV_ACCELERATION);
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms);
}
target_dist = constrain_float(target_dist, 0, _loiter_leash*2.0);
target_dist = constrain_float(target_dist, 0, _loiter_leash*2.0f);
target.x = position.x + (target_dist * velocity.x / vel_total);
target.y = position.y + (target_dist * velocity.y / vel_total);
@ -161,6 +171,7 @@ void AC_WPNav::init_loiter_target(const Vector3f& position, const Vector3f& velo
_pilot_vel_right_cms = 0;
// set last velocity to current velocity
// To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call
_vel_last = _inav->get_velocity();
}
@ -270,24 +281,28 @@ void AC_WPNav::calculate_loiter_leash_length()
float kP = _pid_pos_lat->kP();
// avoid divide by zero
if (kP <= 0.0f) {
if (kP <= 0.0f || _wp_accel_cms <= 0.0f) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
_loiter_accel_cms = _loiter_leash / 2.0f; // set loiter acceleration to 1/2 loiter speed
return;
}
// calculate horiztonal leash length
if(_loiter_speed_cms <= WPNAV_ACCELERATION / kP) {
if(_loiter_speed_cms <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_loiter_leash = _loiter_speed_cms / kP;
}else{
// leash length grows at sqrt of speed further out
_loiter_leash = (WPNAV_ACCELERATION / (2.0*kP*kP)) + (_loiter_speed_cms*_loiter_speed_cms / (2*WPNAV_ACCELERATION));
_loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (_loiter_speed_cms*_loiter_speed_cms / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
}
// set loiter acceleration to 1/2 loiter speed
_loiter_accel_cms = _loiter_leash / 2.0f;
}
///
@ -511,12 +526,12 @@ void AC_WPNav::get_loiter_position_to_velocity(float dt, float max_speed_cms)
dist_error.x = _target.x - curr.x;
dist_error.y = _target.y - curr.y;
linear_distance = WPNAV_ACCELERATION/(2*kP*kP);
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
_distance_to_target = linear_distance; // for reporting purposes
dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = safe_sqrt(2*WPNAV_ACCELERATION*(dist_error_total-linear_distance));
if( dist_error_total > 2.0f*linear_distance ) {
vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance));
desired_vel.x = vel_sqrt * dist_error.x/dist_error_total;
desired_vel.y = vel_sqrt * dist_error.y/dist_error_total;
}else{
@ -630,18 +645,23 @@ void AC_WPNav::calculate_wp_leash_length(bool climb)
// get loiter position P
float kP = _pid_pos_lat->kP();
// sanity check acceleration and avoid divide by zero
if (_wp_accel_cms <= 0.0f) {
_wp_accel_cms = WPNAV_ACCELERATION_MIN;
}
// avoid divide by zero
if (kP <= 0.0f) {
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH;
return;
}
// calculate horiztonal leash length
if(_wp_speed_cms <= WPNAV_ACCELERATION / kP) {
if(_wp_speed_cms <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_wp_leash_xy = _wp_speed_cms / kP;
}else{
// leash length grows at sqrt of speed further out
_wp_leash_xy = (WPNAV_ACCELERATION / (2.0*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2*WPNAV_ACCELERATION));
_wp_leash_xy = (_wp_accel_cms / (2.0f*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
@ -679,7 +699,7 @@ void AC_WPNav::calculate_wp_leash_length(bool climb)
_track_speed = 0;
_track_leash_length = WPNAV_MIN_LEASH_LENGTH;
}else if(_pos_delta_unit.z == 0){
_track_accel = WPNAV_ACCELERATION/pos_delta_unit_xy;
_track_accel = _wp_accel_cms/pos_delta_unit_xy;
_track_speed = _wp_speed_cms/pos_delta_unit_xy;
_track_leash_length = _wp_leash_xy/pos_delta_unit_xy;
}else if(pos_delta_unit_xy == 0){
@ -687,7 +707,7 @@ void AC_WPNav::calculate_wp_leash_length(bool climb)
_track_speed = speed_vert/pos_delta_unit_z;
_track_leash_length = _wp_leash_z/pos_delta_unit_z;
}else{
_track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, WPNAV_ACCELERATION/pos_delta_unit_xy);
_track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy);
_track_speed = min(speed_vert/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy);
_track_leash_length = min(_wp_leash_z/pos_delta_unit_z, _wp_leash_xy/pos_delta_unit_xy);
}

View File

@ -11,7 +11,8 @@
#include <AP_InertialNav.h> // Inertial Navigation library
// loiter maximum velocities and accelerations
#define WPNAV_ACCELERATION 250.0f // defines the velocity vs distant curve. maximum acceleration in cm/s/s that position controller asks for from acceleration controller
#define WPNAV_ACCELERATION 250.0f // defines the default velocity vs distant curve. maximum acceleration in cm/s/s that position controller asks for from acceleration controller
#define WPNAV_ACCELERATION_MIN 50.0f // minimum acceleration in cm/s/s - used for sanity checking _wp_accel parameter
#define WPNAV_ACCEL_MAX 980.0f // max acceleration in cm/s/s that the loiter velocity controller will ask from the lower accel controller.
// should be 1.5 times larger than WPNAV_ACCELERATION.
// max acceleration = max lean angle * 980 * pi / 180. i.e. 23deg * 980 * 3.141 / 180 = 393 cm/s/s
@ -200,6 +201,7 @@ protected:
AP_Float _wp_speed_up_cms; // climb speed target in cm/s
AP_Float _wp_speed_down_cms; // descent speed target in cm/s
AP_Float _wp_radius_cm; // distance from a waypoint in cm that, when crossed, indicates the wp has been reached
AP_Float _wp_accel_cms; // acceleration in cm/s/s during missions
uint32_t _loiter_last_update; // time of last update_loiter call
uint32_t _wpnav_last_update; // time of last update_wpnav call
float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame
@ -219,6 +221,7 @@ protected:
Vector3f _vel_last; // previous iterations velocity in cm/s
int32_t _lean_angle_max; // maximum lean angle. can be set from main code so that throttle controller can stop leans that cause copter to lose altitude
float _loiter_leash; // loiter's horizontal leash length in cm. used to stop the pilot from pushing the target location too far from the current location
float _loiter_accel_cms; // loiter's acceleration in cm/s/s
// waypoint controller internal variables
Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP)