5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-11 02:18:29 -04:00

Copter: Autotune: Level requirement improvements

This commit is contained in:
Leonard Hall 2024-02-19 14:16:37 +10:30 committed by Peter Barker
parent 41a5a1b8fe
commit 79f4e0a2d8
3 changed files with 33 additions and 28 deletions

View File

@ -19,7 +19,7 @@
# define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch # define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch
#endif #endif
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw #define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level #define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 250 // time we require the aircraft to be level before starting next test
#define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level #define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level
#define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users #define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users
#define AUTOTUNE_ANGLE_MAX_RLLPIT_SCALE 2.0 / 3.0 // maximum allowable angle during testing, as a fraction of angle_max #define AUTOTUNE_ANGLE_MAX_RLLPIT_SCALE 2.0 / 3.0 // maximum allowable angle during testing, as a fraction of angle_max
@ -41,6 +41,7 @@ bool AC_AutoTune::init_internals(bool _use_poshold,
ahrs_view = _ahrs_view; ahrs_view = _ahrs_view;
inertial_nav = _inertial_nav; inertial_nav = _inertial_nav;
motors = AP_Motors::get_singleton(); motors = AP_Motors::get_singleton();
const uint32_t now = AP_HAL::millis();
// exit immediately if motor are not armed // exit immediately if motor are not armed
if ((motors == nullptr) || !motors->armed()) { if ((motors == nullptr) || !motors->armed()) {
@ -71,8 +72,8 @@ bool AC_AutoTune::init_internals(bool _use_poshold,
// we are restarting tuning so restart where we left off // we are restarting tuning so restart where we left off
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
step_start_time_ms = AP_HAL::millis(); step_start_time_ms = now;
level_start_time_ms = step_start_time_ms; level_start_time_ms = now;
// reset gains to tuning-start gains (i.e. low I term) // reset gains to tuning-start gains (i.e. low I term)
load_gains(GAIN_INTRA_TEST); load_gains(GAIN_INTRA_TEST);
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_RESTART); LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_RESTART);
@ -270,39 +271,35 @@ void AC_AutoTune::run()
// return true if vehicle is close to level // return true if vehicle is close to level
bool AC_AutoTune::currently_level() bool AC_AutoTune::currently_level()
{ {
float threshold_mul = 1.0; // abort AutoTune if we pass 2 * AUTOTUNE_LEVEL_TIMEOUT_MS
const uint32_t now_ms = AP_HAL::millis();
uint32_t now_ms = AP_HAL::millis(); if (now_ms - level_start_time_ms > 2 * AUTOTUNE_LEVEL_TIMEOUT_MS) {
if (now_ms - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) { gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: Failed to level, please tune manually");
// after a long wait we use looser threshold, to allow tuning mode = FAILED;
// with poor initial gains LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_FAILED);
threshold_mul *= 2;
} }
// display warning if vehicle fails to level // slew threshold to ensure sufficient settling time for aircraft unable to obtain small thresholds
if ((now_ms - level_start_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS) && // relax threshold if we pass AUTOTUNE_LEVEL_TIMEOUT_MS
(now_ms - level_fail_warning_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS)) { const float threshold_mul = constrain_float((float)(now_ms - level_start_time_ms) / (float)AUTOTUNE_LEVEL_TIMEOUT_MS, 0.0, 2.0);
gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: failing to level, please tune manually");
level_fail_warning_time_ms = now_ms;
}
if (fabsf(ahrs_view->roll_sensor - roll_cd) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { if (fabsf(ahrs_view->roll_sensor - roll_cd) > threshold_mul * AUTOTUNE_LEVEL_ANGLE_CD) {
return false; return false;
} }
if (fabsf(ahrs_view->pitch_sensor - pitch_cd) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { if (fabsf(ahrs_view->pitch_sensor - pitch_cd) > threshold_mul * AUTOTUNE_LEVEL_ANGLE_CD) {
return false; return false;
} }
if (fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { if (fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)) > threshold_mul * AUTOTUNE_LEVEL_ANGLE_CD) {
return false; return false;
} }
if ((ToDeg(ahrs_view->get_gyro().x) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD) { if ((ToDeg(ahrs_view->get_gyro().x) * 100.0f) > threshold_mul * AUTOTUNE_LEVEL_RATE_RP_CD) {
return false; return false;
} }
if ((ToDeg(ahrs_view->get_gyro().y) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD) { if ((ToDeg(ahrs_view->get_gyro().y) * 100.0f) > threshold_mul * AUTOTUNE_LEVEL_RATE_RP_CD) {
return false; return false;
} }
if ((ToDeg(ahrs_view->get_gyro().z) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD) { if ((ToDeg(ahrs_view->get_gyro().z) * 100.0f) > threshold_mul * AUTOTUNE_LEVEL_RATE_Y_CD) {
return false; return false;
} }
return true; return true;
@ -395,6 +392,8 @@ void AC_AutoTune::control_attitude()
if (lean_angle <= -attitude_control->lean_angle_max_cd() * AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_SCALE) { if (lean_angle <= -attitude_control->lean_angle_max_cd() * AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_SCALE) {
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
positive_direction = twitch_reverse_direction(); positive_direction = twitch_reverse_direction();
step_start_time_ms = now;
level_start_time_ms = now;
} }
// protect from roll over // protect from roll over
@ -402,6 +401,8 @@ void AC_AutoTune::control_attitude()
if (resultant_angle_cd > attitude_control->lean_angle_max_cd() * AUTOTUNE_ANGLE_MAX_RLLPIT_SCALE) { if (resultant_angle_cd > attitude_control->lean_angle_max_cd() * AUTOTUNE_ANGLE_MAX_RLLPIT_SCALE) {
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
positive_direction = twitch_reverse_direction(); positive_direction = twitch_reverse_direction();
step_start_time_ms = now;
level_start_time_ms = now;
} }
#if HAL_LOGGING_ENABLED #if HAL_LOGGING_ENABLED
@ -551,7 +552,7 @@ void AC_AutoTune::control_attitude()
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
positive_direction = twitch_reverse_direction(); positive_direction = twitch_reverse_direction();
step_start_time_ms = now; step_start_time_ms = now;
level_start_time_ms = step_start_time_ms; level_start_time_ms = now;
step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS; step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS;
break; break;
} }
@ -561,6 +562,8 @@ void AC_AutoTune::control_attitude()
// called before tuning starts to backup original gains // called before tuning starts to backup original gains
void AC_AutoTune::backup_gains_and_initialise() void AC_AutoTune::backup_gains_and_initialise()
{ {
const uint32_t now = AP_HAL::millis();
// initialise state because this is our first time // initialise state because this is our first time
if (roll_enabled()) { if (roll_enabled()) {
axis = ROLL; axis = ROLL;
@ -580,10 +583,10 @@ void AC_AutoTune::backup_gains_and_initialise()
// start at the beginning of tune sequence // start at the beginning of tune sequence
next_tune_type(tune_type, true); next_tune_type(tune_type, true);
positive_direction = false;
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
step_start_time_ms = AP_HAL::millis(); positive_direction = false;
level_start_time_ms = step_start_time_ms; step_start_time_ms = now;
level_start_time_ms = now;
step_scaler = 1.0f; step_scaler = 1.0f;
desired_yaw_cd = ahrs_view->yaw_sensor; desired_yaw_cd = ahrs_view->yaw_sensor;

View File

@ -273,6 +273,7 @@ protected:
float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step-multi only float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step-multi only
uint32_t step_start_time_ms; // start time of current tuning step (used for timeout checks) uint32_t step_start_time_ms; // start time of current tuning step (used for timeout checks)
uint32_t step_time_limit_ms; // time limit of current autotune process uint32_t step_time_limit_ms; // time limit of current autotune process
uint32_t level_start_time_ms; // start time of waiting for level
int8_t counter; // counter for tuning gains int8_t counter; // counter for tuning gains
float target_rate; // target rate-multi only float target_rate; // target rate-multi only
float target_angle; // target angle-multi only float target_angle; // target angle-multi only
@ -330,8 +331,6 @@ private:
// variables // variables
uint32_t override_time; // the last time the pilot overrode the controls uint32_t override_time; // the last time the pilot overrode the controls
uint32_t level_start_time_ms; // start time of waiting for level
uint32_t level_fail_warning_time_ms; // last time level failure warning message was sent to GCS
// time in ms of last pilot override warning // time in ms of last pilot override warning
uint32_t last_pilot_override_warning; uint32_t last_pilot_override_warning;

View File

@ -563,6 +563,7 @@ void AC_AutoTune_Multi::twitching_test_rate(float rate, float rate_target_max, f
// update min and max and test for end conditions // update min and max and test for end conditions
void AC_AutoTune_Multi::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min) void AC_AutoTune_Multi::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min)
{ {
const uint32_t now = AP_HAL::millis();
if (angle >= angle_max) { if (angle >= angle_max) {
if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) { if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) {
// we have reached the angle limit before completing the measurement of maximum and minimum // we have reached the angle limit before completing the measurement of maximum and minimum
@ -571,6 +572,8 @@ void AC_AutoTune_Multi::twitching_abort_rate(float angle, float rate, float angl
// ignore result and start test again // ignore result and start test again
step = WAITING_FOR_LEVEL; step = WAITING_FOR_LEVEL;
positive_direction = twitch_reverse_direction(); positive_direction = twitch_reverse_direction();
step_start_time_ms = now;
level_start_time_ms = now;
} else { } else {
step = UPDATE_GAINS; step = UPDATE_GAINS;
} }