mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 06:28:27 -04:00
AP_HAL_SITL: SITL version of DSP implementation
This commit is contained in:
parent
495a89459f
commit
7571b4d95c
@ -14,6 +14,7 @@ class Util;
|
||||
class Semaphore;
|
||||
class GPIO;
|
||||
class DigitalSource;
|
||||
class DSP;
|
||||
class HALSITLCAN;
|
||||
class HALSITLCANDriver;
|
||||
} // namespace HALSITL
|
||||
|
@ -6,3 +6,4 @@
|
||||
#include "UARTDriver.h"
|
||||
#include "SITL_State.h"
|
||||
#include "Semaphores.h"
|
||||
#include "DSP.h"
|
||||
|
192
libraries/AP_HAL_SITL/DSP.cpp
Normal file
192
libraries/AP_HAL_SITL/DSP.cpp
Normal file
@ -0,0 +1,192 @@
|
||||
/*
|
||||
* This file is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Code by Andy Piper
|
||||
*/
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
#include "AP_HAL_SITL.h"
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
#include "DSP.h"
|
||||
#include <cmath>
|
||||
|
||||
using namespace HALSITL;
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
// The algorithms originally came from betaflight but are now substantially modified based on theory and experiment.
|
||||
// https://holometer.fnal.gov/GH_FFT.pdf "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
|
||||
// including a comprehensive list of window functions and some new flat-top windows." - Heinzel et. al is a great reference
|
||||
// for understanding the underlying theory although we do not use spectral density here since time resolution is equally
|
||||
// important as frequency resolution. Referred to as [Heinz] throughout the code.
|
||||
|
||||
// initialize the FFT state machine
|
||||
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate)
|
||||
{
|
||||
DSP::FFTWindowStateSITL* fft = new DSP::FFTWindowStateSITL(window_size, sample_rate);
|
||||
if (fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr) {
|
||||
delete fft;
|
||||
return nullptr;
|
||||
}
|
||||
return fft;
|
||||
}
|
||||
|
||||
// start an FFT analysis
|
||||
void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size)
|
||||
{
|
||||
step_hanning((FFTWindowStateSITL*)state, samples, buffer_index, buffer_size);
|
||||
}
|
||||
|
||||
// perform remaining steps of an FFT analysis
|
||||
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff)
|
||||
{
|
||||
FFTWindowStateSITL* fft = (FFTWindowStateSITL*)state;
|
||||
step_fft(fft);
|
||||
step_cmplx_mag(fft, start_bin, end_bin, harmonics, noise_att_cutoff);
|
||||
return step_calc_frequencies(fft, start_bin, end_bin);
|
||||
}
|
||||
|
||||
// create an instance of the FFT state machine
|
||||
DSP::FFTWindowStateSITL::FFTWindowStateSITL(uint16_t window_size, uint16_t sample_rate)
|
||||
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate)
|
||||
{
|
||||
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr) {
|
||||
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate window for DSP");
|
||||
return;
|
||||
}
|
||||
|
||||
buf = new complexf[window_size];
|
||||
}
|
||||
|
||||
DSP::FFTWindowStateSITL::~FFTWindowStateSITL()
|
||||
{
|
||||
delete[] buf;
|
||||
}
|
||||
|
||||
// step 1: filter the incoming samples through a Hanning window
|
||||
void DSP::step_hanning(FFTWindowStateSITL* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size)
|
||||
{
|
||||
// 5us
|
||||
// apply hanning window to gyro samples and store result in _freq_bins
|
||||
// hanning starts and ends with 0, could be skipped for minor speed improvement
|
||||
const uint16_t ring_buf_idx = MIN(buffer_size - buffer_index, fft->_window_size);
|
||||
mult_f32(&samples[buffer_index], &fft->_hanning_window[0], &fft->_freq_bins[0], ring_buf_idx);
|
||||
if (buffer_index > 0) {
|
||||
mult_f32(&samples[0], &fft->_hanning_window[ring_buf_idx], &fft->_freq_bins[ring_buf_idx], fft->_window_size - ring_buf_idx);
|
||||
}
|
||||
}
|
||||
|
||||
// step 2: performm an in-place FFT on the windowed data
|
||||
void DSP::step_fft(FFTWindowStateSITL* fft)
|
||||
{
|
||||
for (uint16_t i = 0; i < fft->_window_size; i++) {
|
||||
fft->buf[i] = complexf(fft->_freq_bins[i], 0);
|
||||
}
|
||||
|
||||
calculate_fft(fft->buf, fft->_window_size);
|
||||
|
||||
for (uint16_t i = 0; i < fft->_bin_count; i++) {
|
||||
fft->_freq_bins[i] = std::norm(fft->buf[i]);
|
||||
}
|
||||
|
||||
// components at the nyquist frequency are real only
|
||||
for (uint16_t i = 0, j = 0; i <= fft->_bin_count; i++, j += 2) {
|
||||
fft->_rfft_data[j] = fft->buf[i].real();
|
||||
fft->_rfft_data[j+1] = fft->buf[i].imag();
|
||||
}
|
||||
}
|
||||
|
||||
void DSP::mult_f32(const float* v1, const float* v2, float* vout, uint16_t len)
|
||||
{
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
vout[i] = v1[i] * v2[i];
|
||||
}
|
||||
}
|
||||
|
||||
void DSP::vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const
|
||||
{
|
||||
*maxValue = vin[0];
|
||||
*maxIndex = 0;
|
||||
for (uint16_t i = 1; i < len; i++) {
|
||||
if (vin[i] > *maxValue) {
|
||||
*maxValue = vin[i];
|
||||
*maxIndex = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DSP::vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const
|
||||
{
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
vout[i] = vin[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
// simple integer log2
|
||||
static uint16_t fft_log2(uint16_t n)
|
||||
{
|
||||
uint16_t k = n, i = 0;
|
||||
while (k) {
|
||||
k >>= 1;
|
||||
i++;
|
||||
}
|
||||
return i - 1;
|
||||
}
|
||||
|
||||
// calculate the in-place FFT of the input using the Cooley–Tukey algorithm
|
||||
// this is a translation of Ron Nicholson's version in http://www.nicholson.com/dsp.fft1.html
|
||||
void DSP::calculate_fft(complexf *samples, uint16_t fftlen)
|
||||
{
|
||||
uint16_t m = fft_log2(fftlen);
|
||||
// shuffle data using bit reversed addressing ***
|
||||
for (uint16_t k = 0; k < fftlen; k++) {
|
||||
// generate a bit reversed address for samples[k] ***
|
||||
uint16_t ki = k, kr = 0;
|
||||
for (uint16_t i=1; i<=m; i++) {
|
||||
kr <<= 1; // left shift result kr by 1 bit
|
||||
if (ki % 2 == 1) {
|
||||
kr++;
|
||||
}
|
||||
ki >>= 1; // right shift temp ki by 1 bit
|
||||
}
|
||||
// swap data samples[k] to bit reversed address samples[kr]
|
||||
if (kr > k) {
|
||||
complexf t = samples[kr];
|
||||
samples[kr] = samples[k];
|
||||
samples[k] = t;
|
||||
}
|
||||
}
|
||||
|
||||
// do fft butterflys in place
|
||||
uint16_t istep = 2;
|
||||
while (istep <= fftlen) {// layers 2,4,8,16, ... ,n
|
||||
uint16_t is2 = istep / 2;
|
||||
uint16_t astep = fftlen / istep;
|
||||
for (uint16_t km = 0; km < is2; km++) { // outer row loop
|
||||
uint16_t a = km * astep; // twiddle angle index
|
||||
complexf w(sinf(2 * M_PI * (a+(fftlen/4)) / fftlen), sinf(2 * M_PI * a / fftlen));
|
||||
for (uint16_t ki = 0; ki <= (fftlen - istep); ki += istep) { // inner column loop
|
||||
uint16_t i = km + ki;
|
||||
uint16_t j = is2 + i;
|
||||
complexf t = w * samples[j];
|
||||
complexf q = samples[i];
|
||||
samples[j] = q - t;
|
||||
samples[i] = q + t;
|
||||
}
|
||||
}
|
||||
istep <<= 1;
|
||||
}
|
||||
}
|
55
libraries/AP_HAL_SITL/DSP.h
Normal file
55
libraries/AP_HAL_SITL/DSP.h
Normal file
@ -0,0 +1,55 @@
|
||||
/*
|
||||
* This file is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Code by Andy Piper
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
#include "AP_HAL_SITL.h"
|
||||
|
||||
#include <complex>
|
||||
|
||||
typedef std::complex<float> complexf;
|
||||
|
||||
// ChibiOS implementation of FFT analysis to run on STM32 processors
|
||||
class HALSITL::DSP : public AP_HAL::DSP {
|
||||
public:
|
||||
// initialise an FFT instance
|
||||
virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate) override;
|
||||
// start an FFT analysis
|
||||
virtual void fft_start(FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) override;
|
||||
// perform remaining steps of an FFT analysis
|
||||
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) override;
|
||||
|
||||
// STM32-based FFT state
|
||||
class FFTWindowStateSITL : public AP_HAL::DSP::FFTWindowState {
|
||||
friend class HALSITL::DSP;
|
||||
|
||||
protected:
|
||||
FFTWindowStateSITL(uint16_t window_size, uint16_t sample_rate);
|
||||
~FFTWindowStateSITL();
|
||||
|
||||
private:
|
||||
complexf* buf;
|
||||
};
|
||||
|
||||
private:
|
||||
void step_hanning(FFTWindowStateSITL* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size);
|
||||
void step_fft(FFTWindowStateSITL* fft);
|
||||
void mult_f32(const float* v1, const float* v2, float* vout, uint16_t len);
|
||||
void vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const override;
|
||||
void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override;
|
||||
void calculate_fft(complexf* f, uint16_t length);
|
||||
};
|
@ -19,6 +19,7 @@
|
||||
#include "GPIO.h"
|
||||
#include "SITL_State.h"
|
||||
#include "Util.h"
|
||||
#include "DSP.h"
|
||||
|
||||
#include <AP_BoardConfig/AP_BoardConfig.h>
|
||||
#include <AP_HAL_Empty/AP_HAL_Empty.h>
|
||||
@ -35,6 +36,8 @@ static RCInput sitlRCInput(&sitlState);
|
||||
static RCOutput sitlRCOutput(&sitlState);
|
||||
static AnalogIn sitlAnalogIn(&sitlState);
|
||||
static GPIO sitlGPIO(&sitlState);
|
||||
static DSP dspDriver;
|
||||
|
||||
|
||||
// use the Empty HAL for hardware we don't emulate
|
||||
static Empty::I2CDeviceManager i2c_mgr_instance;
|
||||
@ -73,8 +76,9 @@ HAL_SITL::HAL_SITL() :
|
||||
&sitlRCOutput, /* rcoutput */
|
||||
&sitlScheduler, /* scheduler */
|
||||
&utilInstance, /* util */
|
||||
&emptyOpticalFlow, /* onboard optical flow */
|
||||
&emptyFlash, /* flash driver */
|
||||
&emptyOpticalFlow, /* onboard optical flow */
|
||||
&emptyFlash, /* flash driver */
|
||||
&dspDriver, /* dsp driver */
|
||||
nullptr), /* CAN */
|
||||
_sitl_state(&sitlState)
|
||||
{}
|
||||
|
Loading…
Reference in New Issue
Block a user