SITL: add support for ms5525 i2c sensor

This commit is contained in:
Peter Barker 2021-07-12 11:55:35 +10:00 committed by Peter Barker
parent e3b366419b
commit 7375d1949c
3 changed files with 365 additions and 1 deletions

View File

@ -28,6 +28,7 @@
#include "SIM_Airspeed_DLVR.h"
#include "SIM_Temperature_TSYS01.h"
#include "SIM_ICM40609.h"
#include "SIM_MS5525.h"
#include <signal.h>
@ -54,6 +55,7 @@ static Rotoye rotoye;
static Airspeed_DLVR airspeed_dlvr;
static TSYS01 tsys01;
static ICM40609 icm40609;
static MS5525 ms5525;
struct i2c_device_at_address {
uint8_t bus;
@ -67,7 +69,7 @@ struct i2c_device_at_address {
{ 1, 0x38, ignored }, // NCP5623
{ 1, 0x39, ignored }, // NCP5623C
{ 1, 0x40, ignored }, // KellerLD
{ 1, 0x76, ignored }, // MS56XX
{ 1, 0x76, ms5525 },
{ 1, 0x77, tsys01 },
{ 1, 0x0B, rotoye },
{ 2, 0x0B, maxell },

View File

@ -0,0 +1,257 @@
#include "SIM_MS5525.h"
#include <SITL/SITL.h>
#include <stdio.h>
using namespace SITL;
MS5525::MS5525() :
I2CDevice()
{
}
void MS5525::reset()
{
// load prom from internal register:
prom_loaded = true;
}
void MS5525::convert_forward(int32_t D1, int32_t D2, float &P_Pa, float &Temp_C)
{
const uint8_t Q1 = Qx_coeff[0];
const uint8_t Q2 = Qx_coeff[1];
const uint8_t Q3 = Qx_coeff[2];
const uint8_t Q4 = Qx_coeff[3];
const uint8_t Q5 = Qx_coeff[4];
const uint8_t Q6 = Qx_coeff[5];
// this is the forward conversion copied from the driver:
int64_t dT = D2 - int64_t(prom[5]) * (1UL<<Q5);
int64_t TEMP = 2000 + (dT*int64_t(prom[6]))/(1UL<<Q6);
int64_t OFF = int64_t(prom[2])*(1UL<<Q2) + (int64_t(prom[4])*dT)/(1UL<<Q4);
int64_t SENS = int64_t(prom[1])*(1UL<<Q1) + (int64_t(prom[3])*dT)/(1UL<<Q3);
int64_t P = (D1*SENS/(1UL<<21)-OFF)/(1UL<<15);
const float PSI_to_Pa = 6894.757f;
P_Pa = PSI_to_Pa * 1.0e-4 * P;
Temp_C = TEMP * 0.01;
}
void MS5525::convert(float P_Pa, float Temp_C, uint32_t &D1, uint32_t &D2)
{
const uint8_t Q1 = Qx_coeff[0];
const uint8_t Q2 = Qx_coeff[1];
const uint8_t Q3 = Qx_coeff[2];
const uint8_t Q4 = Qx_coeff[3];
const uint8_t Q5 = Qx_coeff[4];
const uint8_t Q6 = Qx_coeff[5];
const int64_t TEMP = Temp_C * 100.0f;
const float dT = ((TEMP-2000)*(1UL<<Q6))/prom[6];
const float PSI_to_Pa = 6894.757f;
const float P = P_Pa / (PSI_to_Pa * 1.0e-4);
const int64_t SENS = int64_t(prom[1])*(1UL<<Q1) + (int64_t(prom[3])*dT)/(1UL<<Q3);
const int64_t OFF = int64_t(prom[2])*(1UL<<Q2) + (int64_t(prom[4])*dT)/(1UL<<Q4);
D1 = (((uint64_t(P*(1U<<15)))+OFF)<<21)/SENS;
D2 = dT + int64_t(prom[5]) * (1UL<<Q5);
float f_P_Pa;
float f_Temp_C;
convert_forward(D1, D2, f_P_Pa, f_Temp_C);
if (fabs(f_P_Pa - P_Pa) > 1) {
AP_HAL::panic("Invalid conversion");
}
if (fabs(f_Temp_C - Temp_C) > 0.1) {
AP_HAL::panic("Invalid conversion");
}
}
void MS5525::convert_D1()
{
float pressure = AP::sitl()->state.airspeed_raw_pressure[0];
if (pressure < 0.1) {
// maths breaks down on very, very low numbers, or there's a
// bug in the conversion code. The simulation can pass in
// very, very low numbers. Clamp it.
pressure = 0.1;
}
const float temperature = 25.0f;
uint32_t D1;
uint32_t D2;
convert(pressure, temperature, D1, D2);
convert_out[2] = D1 & 0xff;
D1 >>= 8;
convert_out[1] = D1 & 0xff;
D1 >>= 8;
convert_out[0] = D1 & 0xff;
}
void MS5525::convert_D2()
{
float pressure = AP::sitl()->state.airspeed_raw_pressure[0];
if (pressure < 0.1) {
// maths breaks down on very, very low numbers, or there's a
// bug in the conversion code. The simulation can pass in
// very, very low numbers. Clamp it.
pressure = 0.1;
}
const float temperature = 25.0f;
uint32_t D1;
uint32_t D2;
convert(pressure, temperature, D1, D2);
convert_out[2] = D2 & 0xff;
D2 >>= 8;
convert_out[1] = D2 & 0xff;
D2 >>= 8;
convert_out[0] = D2 & 0xff;
}
void MS5525::update(const class Aircraft &aircraft)
{
const uint32_t now_us = AP_HAL::micros();
// static uint32_t then_us = 0;
// ::fprintf(stderr, "update: s=%u now=%u delta=%u cmd-age=%u\n", (unsigned)state, (unsigned)now_us, (unsigned)(now_us - then_us), (unsigned)(now_us-command_start_us));
// then_us = now_us;
switch (state) {
case State::COLD:
command_start_us = now_us;
prom_loaded = false;
state = State::COLD_WAIT;
break;
case State::COLD_WAIT:
// 1ms to do anything....
if (now_us - command_start_us < 1) {
break;
}
state = State::UNINITIALISED;
FALLTHROUGH;
case State::UNINITIALISED:
break;
case State::RESET_START:
command_start_us = now_us;
state = State::RESET_WAIT;
break;
case State::RESET_WAIT:
// 2ms for reset to complete (data sheet does not specify?)
if (now_us - command_start_us > 2000) {
reset();
state = State::RUNNING;
break;
}
break;
case State::CONVERSION_D1_START:
command_start_us = now_us;
convert_out[0] = 0;
convert_out[1] = 0;
convert_out[2] = 0;
state = State::CONVERSION_D1_WAIT;
break;
case State::CONVERSION_D1_WAIT:
// driver allows for 10ms for a conversion to happen
if (now_us - command_start_us > conversion_time_osr_1024_us) {
convert_D1();
state = State::RUNNING;
break;
}
break;
case State::CONVERSION_D2_START:
command_start_us = now_us;
convert_out[0] = 0;
convert_out[1] = 0;
convert_out[2] = 0;
state = State::CONVERSION_D2_WAIT;
break;
case State::CONVERSION_D2_WAIT:
// driver allows for 10ms for a conversion to happen
if (now_us - command_start_us > conversion_time_osr_1024_us) {
convert_D2();
state = State::RUNNING;
break;
}
break;
case State::RUNNING:
break;
}
// float pressure = AP::sitl()->state.airspeed_raw_pressure[0];
// float temperature = 25.0f;
}
int MS5525::rdwr(I2C::i2c_rdwr_ioctl_data *&data)
{
struct I2C::i2c_msg &msg = data->msgs[0];
// if (data->nmsgs != 1) {
// AP_HAL::panic("nmsgs=%u", data->nmsgs);
// }
if (msg.flags == I2C_M_RD) {
AP_HAL::panic("Read (%u)",msg.len);
return 0;
}
if (msg.len != 1) {
AP_HAL::panic("bad command length");
}
const Command cmd = (Command)msg.buf[0];
if (state != State::RUNNING) {
if (state == State::UNINITIALISED &&
cmd == Command::RESET) {
// this is OK - RESET is OK in UNINITIALISED
} else {
::fprintf(stderr, "Command (0x%02x) received while not running (state=%u)\n", (unsigned)cmd, (unsigned)state);
return -1; // we could die instead...
}
}
switch (cmd) {
case Command::RESET:
state = State::RESET_START;
break;
case Command::READ_C0:
case Command::READ_C1:
case Command::READ_C2:
case Command::READ_C3:
case Command::READ_C4:
case Command::READ_C5:
case Command::READ_C6:
case Command::READ_CRC: {
if (data->msgs[1].len != 2) {
AP_HAL::panic("Unexpected length");
}
const uint8_t addr = ((unsigned)cmd - (unsigned)Command::READ_C0)/2;
const uint16_t val = htobe16(prom[addr]);
data->msgs[1].buf[0] = val & 0xff;
data->msgs[1].buf[1] = val >> 8;
break;
}
case Command::CONVERT_D1_OSR_1024:
state = State::CONVERSION_D1_START;
break;
case Command::CONVERT_D2_OSR_1024:
state = State::CONVERSION_D2_START;
break;
case Command::READ_CONVERSION:
if (data->msgs[1].len == 0) {
// upon not getting a reading back the driver commands a
// conversion-read but doesn't wait for a response!
::fprintf(stderr, "read of length zero\n");
return -1;
}
if (data->msgs[1].len != 3) {
AP_HAL::panic("Unexpected length=%u", data->msgs[1].len);
}
data->msgs[1].buf[0] = convert_out[0];
data->msgs[1].buf[1] = convert_out[1];
data->msgs[1].buf[2] = convert_out[2];
break;
default:
AP_HAL::panic("Unknown command %u (0x%02x)", (unsigned)cmd, (unsigned)cmd);
}
return 0;
}

105
libraries/SITL/SIM_MS5525.h Normal file
View File

@ -0,0 +1,105 @@
#include "SIM_I2CDevice.h"
#include <AP_Common/Bitmask.h>
namespace SITL {
class MS5525 : public I2CDevice
{
public:
MS5525();
protected:
int rdwr(I2C::i2c_rdwr_ioctl_data *&data) override;
void update(const class Aircraft &aircraft) override;
private:
// float pressure;
// float temperature;
// time we last updated the measurements (simulated internal
// workings of sensor)
uint32_t last_update_ms;
void reset();
enum class Command : uint8_t {
RESET = 0x1E,
READ_CONVERSION = 0x00,
// prom reading commands:
READ_C0 = 0xa0,
READ_C1 = 0xa2,
READ_C2 = 0xa4,
READ_C3 = 0xa6,
READ_C4 = 0xa8,
READ_C5 = 0xaa,
READ_C6 = 0xac,
READ_CRC = 0xae,
// conversion start commands:
CONVERT_D2_OSR_1024 = 0x54,
CONVERT_D1_OSR_1024 = 0x44,
};
enum class State : uint8_t {
COLD = 5,
COLD_WAIT = 6,
UNINITIALISED = 7,
RUNNING = 17,
RESET_START = 27,
RESET_WAIT = 28,
CONVERSION_D1_START = 37,
CONVERSION_D1_WAIT = 38,
CONVERSION_D2_START = 47,
CONVERSION_D2_WAIT = 48,
};
State state = State::COLD;
uint32_t command_start_us;
uint8_t read_prom_addr;
uint8_t convert_out[3];
// this data comes from the datasheet page 7
const uint16_t prom[8] {
0xFFFF, // reserved
36402, // C1, pressure sensitivity
39473, // C2, pressure offset
40393, // C3, temperature coeff of press sensit
29523, // C4, temperature cofff of press offs
29854, // C5, ref temperature
21917, // C6, temperature coeff of temperature
0x000c // checksum
};
bool prom_loaded = false;
// for 5525DSO-pp001DS
const uint8_t Qx_coeff[6] {
15, 17, 7, 5, 7, 21
};
uint16_t conversion_time_osr_1024_us = 2280;
void convert(float P_Pa, float Temp_C, uint32_t &D1, uint32_t &D2);
void convert_D1();
void convert_D2();
void convert_forward(int32_t D1, int32_t D2, float &P_Pa, float &Temp_C);
};
} // namespace SITL