Some nice updates to Rate based nav according to the simulation.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2316 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
jasonshort 2011-05-16 04:59:06 +00:00
parent 41fc9d60ca
commit 73129c52b9
4 changed files with 26 additions and 26 deletions

View File

@ -436,10 +436,10 @@ byte slow_loopCounter;
int superslow_loopCounter; int superslow_loopCounter;
byte flight_timer; // for limiting the execution of flight mode thingys byte flight_timer; // for limiting the execution of flight mode thingys
//unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav
//unsigned long dTnav; // Delta Time in milliseconds for navigation computations unsigned long dTnav; // Delta Time in milliseconds for navigation computations
unsigned long dTnav2; // Delta Time in milliseconds for navigation computations unsigned long dTnav2; // Delta Time in milliseconds for navigation computations
unsigned long elapsedTime; // for doing custom events unsigned long elapsedTime; // for doing custom events
float load; // % MCU cycles used float load; // % MCU cycles used
@ -589,8 +589,8 @@ void medium_loop()
g_gps->new_data = false; g_gps->new_data = false;
// we are not tracking I term on navigation, so this isn't needed // we are not tracking I term on navigation, so this isn't needed
//dTnav = millis() - nav_loopTimer; dTnav = millis() - nav_loopTimer;
//nav_loopTimer = millis(); nav_loopTimer = millis();
// calculate the copter's desired bearing and WP distance // calculate the copter's desired bearing and WP distance
// ------------------------------------------------------ // ------------------------------------------------------
@ -1145,8 +1145,12 @@ void update_navigation()
// calc a pitch to the target // calc a pitch to the target
calc_loiter_nav(); calc_loiter_nav();
} else { // rotate pitch and roll to the copter frame of reference
calc_loiter_output();
} else {
// how far are we from the ideal trajectory?
// this pushes us back on course
update_crosstrack(); update_crosstrack();
// calc a rate dampened pitch to the target // calc a rate dampened pitch to the target
@ -1156,8 +1160,6 @@ void update_navigation()
calc_nav_output(); calc_nav_output();
} }
//limit our copter pitch - this will change if we go to a fully rate limited approach.
limit_nav_pitch_roll(g.pitch_max.get());
// this tracks a location so the copter is always pointing towards it. // this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){ if(yaw_tracking == MAV_ROI_LOCATION){

View File

@ -390,16 +390,16 @@
#endif #endif
#ifndef NAV_WP_P #ifndef NAV_WP_P
# define NAV_WP_P 4.0 # define NAV_WP_P 3.0 // for 4.5 ms error = 13.5 pitch
#endif #endif
#ifndef NAV_WP_I #ifndef NAV_WP_I
# define NAV_WP_I 0.15 // leave 0 # define NAV_WP_I 0.5 // this is a fast ramp up
#endif #endif
#ifndef NAV_WP_D #ifndef NAV_WP_D
# define NAV_WP_D 10 // not sure about at all # define NAV_WP_D .1 // slight dampening of a few degrees at most
#endif #endif
#ifndef NAV_WP_IMAX #ifndef NAV_WP_IMAX
# define NAV_WP_IMAX 20 // 20 degrees # define NAV_WP_IMAX 40 // degrees
#endif #endif
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////

View File

@ -84,7 +84,6 @@ void output_motors_disarmed()
APM_RC.OutputCh(CH_8, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
} }
void output_motor_test() void output_motor_test()
{ {
APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min);

View File

@ -67,13 +67,14 @@ void calc_loiter_nav()
lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error
// Convert distance into ROLL X // Convert distance into ROLL X
//nav_lon = long_error * g.pid_nav_lon.kP(); // 1800 * 2 = 3600 or 36°
nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav2, 1.0); nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav2, 1.0);
// PITCH Y // PITCH Y
//nav_lat = lat_error * g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36°
nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav2, 1.0); // invert lat (for pitch) nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav2, 1.0); // invert lat (for pitch)
}
void calc_loiter_output()
{
// rotate the vector // rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x; nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x;
// BAD // BAD
@ -101,6 +102,12 @@ void calc_loiter_nav()
//EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back //EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward //SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward
//limit our copter pitch - this will change if we go to a fully rate limited approach.
long pmax = g.pitch_max.get();
nav_roll = constrain(nav_roll, -pmax, pmax);
nav_pitch = constrain(nav_pitch, -pmax, pmax);
//limit_nav_pitch_roll(g.pitch_max.get());
} }
void calc_simple_nav() void calc_simple_nav()
@ -154,26 +161,18 @@ void calc_rate_nav()
long target_error = target_bearing - g_gps->ground_course; long target_error = target_bearing - g_gps->ground_course;
target_error = wrap_180(target_error); target_error = wrap_180(target_error);
// calc the cos of the error to tell how fast we are moving towards the target // calc the cos of the error to tell how fast we are moving towards the target in cm
int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100)); int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100));
// change to rate error // change to rate error
// we want to be going 450cm/s // we want to be going 450cm/s
int nav_lat = WAYPOINT_SPEED - groundspeed; int error = constrain(WAYPOINT_SPEED - groundspeed, -1000, 1000);
nav_lat = constrain(nav_lat, -1800, 1800);
// Scale response by kP // Scale response by kP
long nav_lat = g.pid_nav_wp.kP() * nav_lat; long nav_lat = g.pid_nav_wp.get_pid(error, dTnav, 1.0);
int dampening = g.pid_nav_wp.kD() * (groundspeed - last_ground_speed);
// remember our old speed
last_ground_speed = groundspeed;
// dampen our response
nav_lat -= dampening; // +- max error
// limit our output // limit our output
nav_lat = constrain(nav_lat, -1800, 1800); // +- max error nav_lat = constrain(nav_lat, -4000, 4000); // +- max error
} }
#endif #endif