removed retro loiter code since Angel has a branch now.

shrank speed filter to avoid latency
removed unused forward estimator code

placed code for switchover to gps.groundspeed at 1.5m/s

added clamp for D term when below .5m/s to eliminate noise

added hybrid I-term based on speed error and position

changes Loiter D term to use position rather than acceleration to avoid noise
This commit is contained in:
Jason Short 2012-05-15 22:14:23 -07:00
parent cb68adfff2
commit 7278e8d1e5
2 changed files with 22 additions and 48 deletions

View File

@ -1055,11 +1055,7 @@ static void medium_loop()
// this calculates the velocity for Loiter // this calculates the velocity for Loiter
// only called when there is new data // only called when there is new data
// ---------------------------------- // ----------------------------------
if(g.retro_loiter){ calc_XY_velocity();
calc_GPS_velocity();
} else {
calc_XY_velocity();
}
// If we have optFlow enabled we can grab a more accurate speed // If we have optFlow enabled we can grab a more accurate speed
// here and override the speed from the GPS // here and override the speed from the GPS

View File

@ -59,42 +59,23 @@ static void calc_XY_velocity(){
// this speed is ~ in cm because we are using 10^7 numbers from GPS // this speed is ~ in cm because we are using 10^7 numbers from GPS
float tmp = 1.0/dTnav; float tmp = 1.0/dTnav;
// straightforward approach:
///*
x_actual_speed = (float)(g_gps->longitude - last_longitude) * scaleLongDown * tmp; x_actual_speed = (float)(g_gps->longitude - last_longitude) * scaleLongDown * tmp;
y_actual_speed = (float)(g_gps->latitude - last_latitude) * tmp; y_actual_speed = (float)(g_gps->latitude - last_latitude) * tmp;
x_actual_speed = (x_actual_speed + x_speed_old * 3) / 4; x_actual_speed = (x_actual_speed + x_speed_old ) / 2;
y_actual_speed = (y_actual_speed + y_speed_old * 3) / 4; y_actual_speed = (y_actual_speed + y_speed_old ) / 2;
//x_actual_speed = x_actual_speed >> 1;
//y_actual_speed = y_actual_speed >> 1;
x_speed_old = x_actual_speed; x_speed_old = x_actual_speed;
y_speed_old = y_actual_speed; y_speed_old = y_actual_speed;
/*
// Ryan Beall's forward estimator:
int16_t x_speed_new = (float)(g_gps->longitude - last_longitude) * scaleLongDown* tmp;
int16_t y_speed_new = (float)(g_gps->latitude - last_latitude) * tmp;
x_actual_speed = x_speed_new + (x_speed_new - x_speed_old);
y_actual_speed = y_speed_new + (y_speed_new - y_speed_old);
x_speed_old = x_speed_new;
y_speed_old = y_speed_new;
*/
last_longitude = g_gps->longitude; last_longitude = g_gps->longitude;
last_latitude = g_gps->latitude; last_latitude = g_gps->latitude;
}
static void calc_GPS_velocity() /*if(g_gps->ground_speed > 150){
{ float temp = radians((float)g_gps->ground_course/100.0);
float temp = radians((float)g_gps->ground_course/100.0); x_actual_speed = (float)g_gps->ground_speed * sin(temp);
x_actual_speed = (float)g_gps->ground_speed * sin(temp); y_actual_speed = (float)g_gps->ground_speed * cos(temp);
y_actual_speed = (float)g_gps->ground_speed * cos(temp); }*/
} }
static void calc_location_error(struct Location *next_loc) static void calc_location_error(struct Location *next_loc)
@ -162,11 +143,6 @@ static void calc_location_error(struct Location *next_loc)
#define NAV_RATE_ERR_MAX 250 #define NAV_RATE_ERR_MAX 250
static void calc_loiter(int x_error, int y_error) static void calc_loiter(int x_error, int y_error)
{ {
if(g.retro_loiter){
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX);
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
}
int32_t p,i,d; // used to capture pid values for logging int32_t p,i,d; // used to capture pid values for logging
int32_t output; int32_t output;
int32_t x_target_speed, y_target_speed; int32_t x_target_speed, y_target_speed;
@ -182,14 +158,15 @@ static void calc_loiter(int x_error, int y_error)
#endif #endif
x_rate_error = x_target_speed - x_actual_speed; // calc the speed error x_rate_error = x_target_speed - x_actual_speed; // calc the speed error
if(g.retro_loiter){
x_rate_error = constrain(x_rate_error, -NAV_RATE_ERR_MAX, NAV_RATE_ERR_MAX);
}
p = g.pid_loiter_rate_lon.get_p(x_rate_error); p = g.pid_loiter_rate_lon.get_p(x_rate_error);
i = g.pid_loiter_rate_lon.get_i(x_rate_error, dTnav); i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav);
d = g.pid_loiter_rate_lon.get_d(x_rate_error, dTnav); d = g.pid_loiter_rate_lon.get_d(x_error, dTnav);
d = constrain(d, -2000, 2000);
//nav_lon += x_rate_d * (g.pid_loiter_rate_lon.kD() / dTnav); // get rid of noise
if(abs(x_actual_speed) < 50){
d = 0;
}
output = p + i + d; output = p + i + d;
nav_lon = constrain(output, -3000, 3000); // 30° nav_lon = constrain(output, -3000, 3000); // 30°
@ -212,14 +189,15 @@ static void calc_loiter(int x_error, int y_error)
#endif #endif
y_rate_error = y_target_speed - y_actual_speed; y_rate_error = y_target_speed - y_actual_speed;
if(g.retro_loiter){
y_rate_error = constrain(y_rate_error, -NAV_RATE_ERR_MAX, NAV_RATE_ERR_MAX);
}
p = g.pid_loiter_rate_lat.get_p(y_rate_error); p = g.pid_loiter_rate_lat.get_p(y_rate_error);
i = g.pid_loiter_rate_lat.get_i(y_rate_error, dTnav); i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav);
d = g.pid_loiter_rate_lat.get_d(y_rate_error, dTnav); d = g.pid_loiter_rate_lat.get_d(y_error, dTnav);
d = constrain(d, -2000, 2000);
//nav_lat += y_rate_d * (g.pid_loiter_rate_lat.kD() / dTnav); // get rid of noise
if(abs(y_actual_speed) < 50){
d = 0;
}
output = p + i + d; output = p + i + d;
nav_lat = constrain(output, -3000, 3000); // 30° nav_lat = constrain(output, -3000, 3000); // 30°