mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 01:18:29 -04:00
AP_NavEKF: Use default on ground range parameter from range finder object
This commit is contained in:
parent
10476333d8
commit
6c4c54c2ba
@ -114,9 +114,6 @@ extern const AP_HAL::HAL& hal;
|
||||
#define INIT_GYRO_BIAS_UNCERTAINTY 0.1f
|
||||
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.3f
|
||||
|
||||
// altitude of OF and range finder when on ground
|
||||
#define RNG_MEAS_ON_GND 0.1f
|
||||
|
||||
// Define tuning parameters
|
||||
const AP_Param::GroupInfo NavEKF::var_info[] PROGMEM = {
|
||||
|
||||
@ -522,7 +519,7 @@ void NavEKF::ResetHeight(void)
|
||||
for (uint8_t i=0; i<=49; i++){
|
||||
storedStates[i].position.z = -hgtMea;
|
||||
}
|
||||
terrainState = state.position.z + RNG_MEAS_ON_GND;
|
||||
terrainState = state.position.z + rngOnGnd;
|
||||
}
|
||||
|
||||
// this function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
||||
@ -2678,7 +2675,7 @@ void NavEKF::EstimateTerrainOffset()
|
||||
perf_begin(_perf_OpticalFlowEKF);
|
||||
|
||||
// constrain height above ground to be above range measured on ground
|
||||
float heightAboveGndEst = max((terrainState - state.position.z), RNG_MEAS_ON_GND);
|
||||
float heightAboveGndEst = max((terrainState - state.position.z), rngOnGnd);
|
||||
|
||||
// calculate a predicted LOS rate squared
|
||||
float velHorizSq = sq(state.velocity.x) + sq(state.velocity.y);
|
||||
@ -2708,7 +2705,7 @@ void NavEKF::EstimateTerrainOffset()
|
||||
// fuse range finder data
|
||||
if (fuseRngData) {
|
||||
// predict range
|
||||
float predRngMeas = max((terrainState - statesAtRngTime.position[2]),RNG_MEAS_ON_GND) / Tnb_flow.c.z;
|
||||
float predRngMeas = max((terrainState - statesAtRngTime.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||||
|
||||
// Copy required states to local variable names
|
||||
float q0 = statesAtRngTime.quat[0]; // quaternion at optical flow measurement time
|
||||
@ -2727,7 +2724,7 @@ void NavEKF::EstimateTerrainOffset()
|
||||
varInnovRng = (R_RNG + Popt/sq(SK_RNG));
|
||||
|
||||
// constrain terrain height to be below the vehicle
|
||||
terrainState = max(terrainState, statesAtRngTime.position[2] + RNG_MEAS_ON_GND);
|
||||
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd);
|
||||
|
||||
// Calculate the measurement innovation
|
||||
innovRng = predRngMeas - rngMea;
|
||||
@ -2742,7 +2739,7 @@ void NavEKF::EstimateTerrainOffset()
|
||||
terrainState -= K_RNG * innovRng;
|
||||
|
||||
// constrain the state
|
||||
terrainState = max(terrainState, statesAtRngTime.position[2] + RNG_MEAS_ON_GND);
|
||||
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd);
|
||||
|
||||
// correct the covariance
|
||||
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||||
@ -2771,10 +2768,10 @@ void NavEKF::EstimateTerrainOffset()
|
||||
vel.z = statesAtFlowTime.velocity[2];
|
||||
|
||||
// predict range to centre of image
|
||||
float flowRngPred = max((terrainState - statesAtFlowTime.position[2]),RNG_MEAS_ON_GND) / Tnb_flow.c.z;
|
||||
float flowRngPred = max((terrainState - statesAtFlowTime.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||||
|
||||
// constrain terrain height to be below the vehicle
|
||||
terrainState = max(terrainState, statesAtFlowTime.position[2] + RNG_MEAS_ON_GND);
|
||||
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd);
|
||||
|
||||
// calculate relative velocity in sensor frame
|
||||
relVelSensor = Tnb_flow*vel;
|
||||
@ -2836,7 +2833,7 @@ void NavEKF::EstimateTerrainOffset()
|
||||
terrainState -= K_OPT * auxFlowObsInnov;
|
||||
|
||||
// constrain the state
|
||||
terrainState = max(terrainState, statesAtFlowTime.position[2] + RNG_MEAS_ON_GND);
|
||||
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd);
|
||||
|
||||
// correct the covariance
|
||||
Popt = Popt - K_OPT * H_OPT * Popt;
|
||||
@ -2886,11 +2883,11 @@ void NavEKF::FuseOptFlow()
|
||||
velNED_local.z = vd;
|
||||
|
||||
// constrain height above ground to be above range measured on ground
|
||||
float heightAboveGndEst = max((terrainState - pd), RNG_MEAS_ON_GND);
|
||||
float heightAboveGndEst = max((terrainState - pd), rngOnGnd);
|
||||
// Calculate observation jacobians and Kalman gains
|
||||
if (obsIndex == 0) {
|
||||
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
||||
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),RNG_MEAS_ON_GND,1000.0f);
|
||||
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),rngOnGnd,1000.0f);
|
||||
|
||||
// calculate relative velocity in sensor frame
|
||||
relVelSensor = Tnb_flow*velNED_local;
|
||||
@ -3677,7 +3674,7 @@ void NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScal
|
||||
{
|
||||
if (PV_AidingMode == AID_RELATIVE) {
|
||||
// allow 1.0 rad/sec margin for angular motion
|
||||
ekfGndSpdLimit = max((_maxFlowRate - 1.0f), 0.0f) * max((terrainState - state.position[2]), RNG_MEAS_ON_GND);
|
||||
ekfGndSpdLimit = max((_maxFlowRate - 1.0f), 0.0f) * max((terrainState - state.position[2]), rngOnGnd);
|
||||
// use standard gains up to 5.0 metres height and reduce above that
|
||||
ekfNavVelGainScaler = 4.0f / max((terrainState - state.position[2]),4.0f);
|
||||
} else {
|
||||
@ -3986,7 +3983,7 @@ void NavEKF::ConstrainStates()
|
||||
// body magnetic field limit
|
||||
for (uint8_t i=19; i<=21; i++) states[i] = constrain_float(states[i],-0.5f,0.5f);
|
||||
// constrain the terrain offset state
|
||||
terrainState = max(terrainState, state.position.z + RNG_MEAS_ON_GND);
|
||||
terrainState = max(terrainState, state.position.z + rngOnGnd);
|
||||
}
|
||||
|
||||
// update IMU delta angle and delta velocity measurements
|
||||
@ -4138,7 +4135,7 @@ void NavEKF::readHgtData()
|
||||
if (_fusionModeGPS == 3 && _altSource == 1) {
|
||||
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) {
|
||||
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
|
||||
hgtMea = max(rngMea * Tnb_flow.c.z, RNG_MEAS_ON_GND);
|
||||
hgtMea = max(rngMea * Tnb_flow.c.z, rngOnGnd);
|
||||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||||
statesAtHgtTime = statesAtFlowTime;
|
||||
// calculate offset to baro data that enables baro to be used as a backup
|
||||
@ -4146,13 +4143,13 @@ void NavEKF::readHgtData()
|
||||
baroHgtOffset = 0.2f * (_baro.get_altitude() + state.position.z) + 0.8f * baroHgtOffset;
|
||||
} else {
|
||||
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
|
||||
hgtMea = max(_baro.get_altitude() - baroHgtOffset, RNG_MEAS_ON_GND);
|
||||
hgtMea = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd);
|
||||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||||
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay));
|
||||
}
|
||||
} else {
|
||||
// use baro measurement and correct for baro offset
|
||||
hgtMea = _baro.get_altitude() - baroHgtOffset;
|
||||
hgtMea = _baro.get_altitude();
|
||||
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
||||
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay));
|
||||
}
|
||||
|
@ -704,6 +704,8 @@ private:
|
||||
bool gndOffsetValid; // true when the ground offset state can still be considered valid
|
||||
bool flowXfailed; // true when the X optical flow measurement has failed the innovation consistency check
|
||||
float baroHgtOffset; // offset applied when baro height used as a backup height reference if range-finder fails
|
||||
float rngOnGnd; // Expected range finder reading in metres when vehicle is on ground
|
||||
|
||||
|
||||
bool haveDeltaAngles;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user