uncrustify libraries/AP_PeriodicProcess/AP_TimerProcess.cpp

This commit is contained in:
uncrustify 2012-08-16 23:20:55 -07:00 committed by Pat Hickey
parent f7af330bfe
commit 6c2822ad65

View File

@ -8,9 +8,9 @@ extern "C" {
#include <avr/interrupt.h> #include <avr/interrupt.h>
} }
#if defined(ARDUINO) && ARDUINO >= 100 #if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h" #include "Arduino.h"
#else #else
#include "WConstants.h" #include "WConstants.h"
#endif #endif
uint8_t AP_TimerProcess::_period; uint8_t AP_TimerProcess::_period;
@ -27,26 +27,26 @@ AP_TimerProcess::AP_TimerProcess(uint8_t period)
void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg ) void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg )
{ {
// Enable Timer2 Overflow interrupt to trigger process. // Enable Timer2 Overflow interrupt to trigger process.
TIMSK2 = 0; // Disable interrupts TIMSK2 = 0; // Disable interrupts
TCCR2A = 0; // normal counting mode TCCR2A = 0; // normal counting mode
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256 TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256
TCNT2 = 0; // Set count to zero, so it goes off right away. TCNT2 = 0; // Set count to zero, so it goes off right away.
TIFR2 = _BV(TOV2); // clear pending interrupts; TIFR2 = _BV(TOV2); // clear pending interrupts;
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt TIMSK2 = _BV(TOIE2); // enable the overflow interrupt
_failsafe = NULL; _failsafe = NULL;
_suspended = false; _suspended = false;
_in_timer_call = false; _in_timer_call = false;
for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++) for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++)
_proc[i] = NULL; _proc[i] = NULL;
isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run); isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run);
} }
/* /*
register a process to be called at the timer interrupt rate * register a process to be called at the timer interrupt rate
*/ */
void AP_TimerProcess::register_process(ap_procedure proc) void AP_TimerProcess::register_process(ap_procedure proc)
{ {
@ -63,49 +63,49 @@ void AP_TimerProcess::register_process(ap_procedure proc)
void AP_TimerProcess::set_failsafe(ap_procedure proc) void AP_TimerProcess::set_failsafe(ap_procedure proc)
{ {
_failsafe = proc; _failsafe = proc;
} }
void AP_TimerProcess::suspend_timer(void) void AP_TimerProcess::suspend_timer(void)
{ {
_suspended = true; _suspended = true;
} }
void AP_TimerProcess::resume_timer(void) void AP_TimerProcess::resume_timer(void)
{ {
_suspended = false; _suspended = false;
} }
void AP_TimerProcess::run(void) void AP_TimerProcess::run(void)
{ {
// we enable the interrupt again immediately and also enable // we enable the interrupt again immediately and also enable
// interrupts. This allows other time critical interrupts to // interrupts. This allows other time critical interrupts to
// run (such as the serial receive interrupt). We catch the // run (such as the serial receive interrupt). We catch the
// timer calls taking too long using _in_timer_call. // timer calls taking too long using _in_timer_call.
// This approach also gives us a nice uniform spacing between // This approach also gives us a nice uniform spacing between
// timer calls // timer calls
TCNT2 = _period; TCNT2 = _period;
sei(); sei();
uint32_t tnow = micros(); uint32_t tnow = micros();
if (_in_timer_call) { if (_in_timer_call) {
// the timer calls took longer than the period of the // the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious // timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers // driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only // again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if // call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to // the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if // activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't // need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when // block. If it does then we will recurse and die when
// we run out of stack // we run out of stack
if (_failsafe != NULL) { if (_failsafe != NULL) {
_failsafe(tnow); _failsafe(tnow);
} }
return; return;
} }
_in_timer_call = true; _in_timer_call = true;
if (!_suspended) { if (!_suspended) {
// now call the timer based drivers // now call the timer based drivers
@ -116,10 +116,10 @@ void AP_TimerProcess::run(void)
} }
} }
// and the failsafe, if one is setup // and the failsafe, if one is setup
if (_failsafe != NULL) { if (_failsafe != NULL) {
_failsafe(tnow); _failsafe(tnow);
} }
_in_timer_call = false; _in_timer_call = false;
} }