mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 10:28:29 -04:00
Temp revert to previous version, while I hunt down a bug.
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1822 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
parent
4e39571d9c
commit
68e48de0f6
@ -3,9 +3,9 @@
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
@ -15,7 +15,7 @@
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
#include "APM_RC.h"
|
||||
@ -42,20 +42,20 @@ ISR(TIMER4_CAPT_vect)
|
||||
unsigned int Pulse_Width;
|
||||
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; //Calculating pulse
|
||||
if (Pulse<ICR4_old) // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; //Calculating pulse
|
||||
else
|
||||
Pulse_Width=Pulse-ICR4_old; //Calculating pulse
|
||||
if (Pulse_Width>8000) // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
Pulse_Width=Pulse-ICR4_old; //Calculating pulse
|
||||
if (Pulse_Width>8000) // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
else
|
||||
{
|
||||
if (PPM_Counter < (sizeof(PWM_RAW) / sizeof(PWM_RAW[0]))) {
|
||||
PWM_RAW[PPM_Counter++]=Pulse_Width; //Saving pulse.
|
||||
{
|
||||
if (PPM_Counter < (sizeof(PWM_RAW) / sizeof(PWM_RAW[0]))) {
|
||||
PWM_RAW[PPM_Counter++]=Pulse_Width; //Saving pulse.
|
||||
if (PPM_Counter >= NUM_CHANNELS)
|
||||
radio_status = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
}
|
||||
|
||||
@ -69,102 +69,102 @@ APM_RC_Class::APM_RC_Class()
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void APM_RC_Class::Init(void)
|
||||
{
|
||||
// Init PPM input
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); // (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); // (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); // OUT3 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); // OUT4 (PB7/OC1C)
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); // OUT8 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); // OUT7 (PE5/OC3C)
|
||||
pinMode(4,OUTPUT); // (PE3/OC3A)
|
||||
// Init PWM Timer 4
|
||||
// not avail // (PH3/OC4A)
|
||||
pinMode(7,OUTPUT); // OUT6 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); // OUT5 (PH5/OC4C)
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
OCR1A = 3000; //PB5, none
|
||||
//OCR1B = 3000; //PB6, OUT2
|
||||
//OCR1C = 3000; //PB7 OUT3
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); // OUT2 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); // OUT1 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); // (PL3/OC5A)
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(4,OUTPUT); // (PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
OCR3A = 3000; //PE3, NONE
|
||||
OCR3B = 3000; //PE4, OUT7
|
||||
OCR3C = 3000; //PE5, OUT6
|
||||
ICR3 = 40000; //50hz freq
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); // (PL3/OC5A)
|
||||
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); // Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); // Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
ICR1 = 40000; // 50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
OCR1A = 3000; // PB5, none
|
||||
OCR1B = 3000; // PB6, OUT3
|
||||
OCR1C = 3000; // PB7, OUT4
|
||||
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
OCR5A = 3000; //PL3,
|
||||
//OCR5B = 3000; //PL4, OUT0
|
||||
//OCR5C = 3000; //PL5, OUT1
|
||||
ICR5 = 40000; //50hz freq
|
||||
|
||||
TCCR3A = ((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
ICR3 = 40000; // 50hz freq
|
||||
OCR3A = 3000; // PE3, NONE
|
||||
OCR3B = 3000; // PE4, OUT7
|
||||
OCR3C = 3000; // PE5, OUT7
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
|
||||
TCCR5A = ((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
ICR5 = 40000; //50hz freq
|
||||
OCR5A = 3000; // PL3,
|
||||
OCR5B = 3000; // PL4, OUT1
|
||||
OCR5C = 3000; // PL5, OUT2
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
|
||||
TCCR4A = ((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));// Input Capture rising edge
|
||||
OCR4A = 40000; // 50hz freq.
|
||||
OCR4B = 3000; // PH4, OUT6
|
||||
OCR4C = 3000; // PH5, OUT5
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
OCR4B = 3000; //PH4, OUT5
|
||||
OCR4C = 3000; //PH5, OUT4
|
||||
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
}
|
||||
|
||||
void APM_RC_Class::OutputCh(unsigned char ch, uint16_t pwm)
|
||||
{
|
||||
pwm = constrain(pwm, MIN_PULSEWIDTH, MAX_PULSEWIDTH);
|
||||
pwm <<= 1; // pwm * 2;
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch){
|
||||
case 0: OCR5B = pwm; break; // ch1
|
||||
case 1: OCR5C = pwm; break; // ch2
|
||||
case 2: OCR1B = pwm; break; // ch3
|
||||
case 3: OCR1C = pwm; break; // ch4
|
||||
case 4: OCR4C = pwm; break; // ch5
|
||||
case 5: OCR4B = pwm; break; // ch6
|
||||
case 6: OCR3C = pwm; break; // ch7
|
||||
case 7: OCR3B = pwm; break; // ch8
|
||||
case 8: OCR5A = pwm; break; // ch9, PL3
|
||||
case 9: OCR1A = pwm; break; // ch10,PB5
|
||||
case 10: OCR3A = pwm; break; // ch11, PE3
|
||||
}
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR5B=pwm; break; //ch0
|
||||
case 1: OCR5C=pwm; break; //ch1
|
||||
case 2: OCR1B=pwm; break; //ch2
|
||||
case 3: OCR1C=pwm; break; //ch3
|
||||
case 4: OCR4C=pwm; break; //ch4
|
||||
case 5: OCR4B=pwm; break; //ch5
|
||||
case 6: OCR3C=pwm; break; //ch6
|
||||
case 7: OCR3B=pwm; break; //ch7
|
||||
case 8: OCR5A=pwm; break; //ch8, PL3
|
||||
case 9: OCR1A=pwm; break; //ch9, PB5
|
||||
case 10: OCR3A=pwm; break; //ch10, PE3
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_Class::InputCh(unsigned char ch)
|
||||
{
|
||||
uint16_t result;
|
||||
uint16_t result2;
|
||||
uint16_t result;
|
||||
uint16_t result2;
|
||||
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = PWM_RAW[ch] >> 1; // Because timer runs at 0.5us we need to do value / 2
|
||||
result2 = PWM_RAW[ch] >> 1;
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
|
||||
result2 = PWM_RAW[ch]>>1;
|
||||
if (result != result2)
|
||||
result = PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
|
||||
|
||||
if (result != result2)
|
||||
result = PWM_RAW[ch] >> 1; // if the results are different we make a third reading (this should be fine)
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result, MIN_PULSEWIDTH, MAX_PULSEWIDTH);
|
||||
radio_status = 0; // Radio channel read
|
||||
return(result);
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
radio_status=0; // Radio channel read
|
||||
return(result);
|
||||
}
|
||||
|
||||
unsigned char APM_RC_Class::GetState(void)
|
||||
@ -176,20 +176,20 @@ unsigned char APM_RC_Class::GetState(void)
|
||||
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
|
||||
void APM_RC_Class::Force_Out0_Out1(void)
|
||||
{
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
|
||||
void APM_RC_Class::Force_Out2_Out3(void)
|
||||
{
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
|
||||
void APM_RC_Class::Force_Out6_Out7(void)
|
||||
{
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
}
|
||||
|
||||
// allow HIL override of RC values
|
||||
@ -199,7 +199,7 @@ void APM_RC_Class::setHIL(int16_t v[NUM_CHANNELS])
|
||||
{
|
||||
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
}
|
||||
radio_status = 1;
|
||||
|
Loading…
Reference in New Issue
Block a user