mirror of https://github.com/ArduPilot/ardupilot
new AP_Param subsystem
This commit is contained in:
parent
69f1613f2c
commit
5b842a447f
|
@ -0,0 +1,366 @@
|
|||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
//
|
||||
// This is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License as published by the
|
||||
// Free Software Foundation; either version 2.1 of the License, or (at
|
||||
// your option) any later version.
|
||||
//
|
||||
|
||||
/// @file AP_Param.cpp
|
||||
/// @brief The AP variable store.
|
||||
|
||||
|
||||
#include <AP_Common.h>
|
||||
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
// #define ENABLE_FASTSERIAL_DEBUG
|
||||
|
||||
#ifdef ENABLE_FASTSERIAL_DEBUG
|
||||
# include <FastSerial.h>
|
||||
# define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0)
|
||||
#else
|
||||
# define serialDebug(fmt, args...)
|
||||
#endif
|
||||
|
||||
// Static member variables for AP_Param.
|
||||
//
|
||||
|
||||
// number of rows in the _var_info[] table
|
||||
uint16_t AP_Param::_num_vars;
|
||||
|
||||
// storage and naming information about all types that can be saved
|
||||
const AP_Param::Info *AP_Param::_var_info;
|
||||
|
||||
// write to EEPROM, checking each byte to avoid writing
|
||||
// bytes that are already correct
|
||||
void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size)
|
||||
{
|
||||
const uint8_t *b = (const uint8_t *)ptr;
|
||||
while (size--) {
|
||||
uint8_t v = eeprom_read_byte((const uint8_t *)ofs);
|
||||
if (v != *b) {
|
||||
eeprom_write_byte((uint8_t *)ofs, *b);
|
||||
}
|
||||
b++;
|
||||
ofs++;
|
||||
}
|
||||
}
|
||||
|
||||
// write a sentinal value at the given offset
|
||||
void AP_Param::write_sentinal(uint16_t ofs)
|
||||
{
|
||||
struct Param_header phdr;
|
||||
phdr.type = AP_PARAM_NONE;
|
||||
phdr.key = 0;
|
||||
phdr.group_element = 0;
|
||||
eeprom_write_check(&phdr, ofs, sizeof(phdr));
|
||||
}
|
||||
|
||||
// erase all EEPROM variables by re-writing the header and adding
|
||||
// a sentinal
|
||||
void AP_Param::erase_all(void)
|
||||
{
|
||||
struct EEPROM_header hdr;
|
||||
|
||||
serialDebug("erase_all");
|
||||
|
||||
// write the header
|
||||
hdr.magic = k_EEPROM_magic;
|
||||
hdr.revision = k_EEPROM_revision;
|
||||
hdr.spare = 0;
|
||||
eeprom_write_check(&hdr, 0, sizeof(hdr));
|
||||
|
||||
// add a sentinal directly after the header
|
||||
write_sentinal(sizeof(struct EEPROM_header));
|
||||
}
|
||||
|
||||
// setup the _var_info[] table
|
||||
bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars)
|
||||
{
|
||||
struct EEPROM_header hdr;
|
||||
|
||||
_var_info = info;
|
||||
_num_vars = num_vars;
|
||||
|
||||
serialDebug("setup %u vars", (unsigned)num_vars);
|
||||
|
||||
// check the header
|
||||
eeprom_read_block(&hdr, 0, sizeof(hdr));
|
||||
if (hdr.magic != k_EEPROM_magic ||
|
||||
hdr.revision != k_EEPROM_revision) {
|
||||
// header doesn't match. We can't recover any variables. Wipe
|
||||
// the header and setup the sentinal directly after the header
|
||||
serialDebug("bad header in setup - erasing");
|
||||
erase_all();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// find the info structure given a header
|
||||
// return the Info structure and a pointer to the variables storage
|
||||
const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr)
|
||||
{
|
||||
// loop over all named variables
|
||||
for (uint16_t i=0; i<_num_vars; i++) {
|
||||
uint8_t type = pgm_read_byte(&_var_info[i].type);
|
||||
uint16_t key = pgm_read_word(&_var_info[i].key);
|
||||
if (key != phdr.key) {
|
||||
// not the right key
|
||||
continue;
|
||||
}
|
||||
if (type != AP_PARAM_GROUP) {
|
||||
// if its not a group then we are done
|
||||
*ptr = (void*)pgm_read_pointer(&_var_info[i].ptr);
|
||||
return &_var_info[i];
|
||||
}
|
||||
|
||||
// for groups we need to check each group element
|
||||
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
|
||||
for (uint8_t j=0;
|
||||
pgm_read_byte(&group_info[j].type) != AP_PARAM_NONE;
|
||||
j++) {
|
||||
if (j == phdr.group_element) {
|
||||
// found a group element
|
||||
*ptr = (void*)(pgm_read_pointer(&_var_info[i].ptr) + pgm_read_word(&group_info[j].offset));
|
||||
return &_var_info[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
serialDebug("failed to find type=%u key=%u\n",
|
||||
(unsigned)phdr.type,
|
||||
(unsigned)phdr.key);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// find the info structure for a variable
|
||||
const struct AP_Param::Info *AP_Param::find_var_info(uint8_t *group_element)
|
||||
{
|
||||
for (uint16_t i=0; i<_num_vars; i++) {
|
||||
uint8_t type = pgm_read_byte(&_var_info[i].type);
|
||||
uintptr_t base = pgm_read_pointer(&_var_info[i].ptr);
|
||||
if (type == AP_PARAM_GROUP) {
|
||||
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
|
||||
for (uint8_t j=0;
|
||||
(type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ;
|
||||
j++) {
|
||||
if ((uintptr_t)this == base + pgm_read_pointer(&group_info[j].offset)) {
|
||||
if (group_element != NULL) {
|
||||
*group_element = j;
|
||||
}
|
||||
return &_var_info[i];
|
||||
}
|
||||
}
|
||||
} else if (base == (uintptr_t)this) {
|
||||
*group_element = 0;
|
||||
return &_var_info[i];
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// return the storage size for a AP_PARAM_* type
|
||||
const uint8_t AP_Param::type_size(enum ap_var_type type)
|
||||
{
|
||||
switch (type) {
|
||||
case AP_PARAM_NONE:
|
||||
case AP_PARAM_GROUP:
|
||||
return 0;
|
||||
case AP_PARAM_INT8:
|
||||
return 1;
|
||||
case AP_PARAM_INT16:
|
||||
return 2;
|
||||
case AP_PARAM_INT32:
|
||||
return 4;
|
||||
case AP_PARAM_FLOAT:
|
||||
return 4;
|
||||
case AP_PARAM_VECTOR3F:
|
||||
return 3*4;
|
||||
case AP_PARAM_MATRIX3F:
|
||||
return 3*3*4;
|
||||
}
|
||||
serialDebug("unknown type %u\n", type);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// scan the EEPROM looking for a given variable by header content
|
||||
// return true if found, along with the offset in the EEPROM where
|
||||
// the variable is stored
|
||||
// if not found return the offset of the sentinal, or
|
||||
bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
|
||||
{
|
||||
struct Param_header phdr;
|
||||
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
|
||||
while (ofs < k_EEPROM_size) {
|
||||
eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr));
|
||||
if (phdr.type == target->type &&
|
||||
phdr.key == target->key &&
|
||||
phdr.group_element == target->group_element) {
|
||||
// found it
|
||||
*pofs = ofs;
|
||||
return true;
|
||||
}
|
||||
if (phdr.type == AP_PARAM_NONE &&
|
||||
phdr.key == 0) {
|
||||
// we've reached the sentinal
|
||||
*pofs = ofs;
|
||||
serialDebug("failed to scan type=%u key=%u\n",
|
||||
(unsigned)target->type,
|
||||
(unsigned)target->key);
|
||||
return false;
|
||||
}
|
||||
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
|
||||
}
|
||||
*pofs = ~0;
|
||||
serialDebug("scan past end of eeprom");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Copy the variable's whole name to the supplied buffer.
|
||||
//
|
||||
// If the variable is a group member, prepend the group name.
|
||||
//
|
||||
void AP_Param::copy_name(char *buffer, size_t buffer_size)
|
||||
{
|
||||
uint8_t group_element;
|
||||
const struct AP_Param::Info *info = find_var_info(&group_element);
|
||||
if (info == NULL) {
|
||||
*buffer = 0;
|
||||
serialDebug("no info found");
|
||||
return;
|
||||
}
|
||||
strncpy_P(buffer, info->name, buffer_size);
|
||||
if (pgm_read_byte(&info->type) == AP_PARAM_GROUP) {
|
||||
uint8_t len = strnlen(buffer, buffer_size);
|
||||
if (len < buffer_size) {
|
||||
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&info->group_info);
|
||||
strncpy_P(&buffer[len], group_info->name, buffer_size-len);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find a variable by name.
|
||||
//
|
||||
AP_Param *
|
||||
AP_Param::find(const char *name)
|
||||
{
|
||||
for (uint16_t i=0; i<_num_vars; i++) {
|
||||
uint8_t type = pgm_read_byte(&_var_info[i].type);
|
||||
if (type == AP_PARAM_GROUP) {
|
||||
uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE);
|
||||
if (strncmp_P(name, _var_info[i].name, len) != 0) {
|
||||
continue;
|
||||
}
|
||||
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
|
||||
for (uint8_t j=0;
|
||||
(type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ;
|
||||
j++) {
|
||||
if (strcasecmp_P(name+len, group_info[j].name) == 0) {
|
||||
uintptr_t p = pgm_read_pointer(&_var_info[i].ptr);
|
||||
return (AP_Param *)(p + pgm_read_pointer(&group_info[j].offset));
|
||||
}
|
||||
}
|
||||
} else if (strcasecmp_P(name, _var_info[i].name) == 0) {
|
||||
return (AP_Param *)pgm_read_pointer(&_var_info[i].ptr);
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Save the variable to EEPROM, if supported
|
||||
//
|
||||
bool AP_Param::save(void)
|
||||
{
|
||||
uint8_t group_element;
|
||||
const struct AP_Param::Info *info = find_var_info(&group_element);
|
||||
|
||||
if (info == NULL) {
|
||||
// we don't have any info on how to store it
|
||||
return false;
|
||||
}
|
||||
|
||||
struct Param_header phdr;
|
||||
|
||||
// create the header we will use to store the variable
|
||||
phdr.type = pgm_read_byte(&info->type);
|
||||
phdr.key = pgm_read_word(&info->key);
|
||||
phdr.group_element = group_element;
|
||||
|
||||
// scan EEPROM to find the right location
|
||||
uint16_t ofs;
|
||||
if (scan(&phdr, &ofs)) {
|
||||
// found an existing copy of the variable
|
||||
eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
|
||||
return true;
|
||||
}
|
||||
if (ofs == (uint16_t)~0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// write a new sentinal, then the data, then the header
|
||||
write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type));
|
||||
eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
|
||||
eeprom_write_check(&phdr, ofs, sizeof(phdr));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Load the variable from EEPROM, if supported
|
||||
//
|
||||
bool AP_Param::load(void)
|
||||
{
|
||||
uint8_t group_element;
|
||||
const struct AP_Param::Info *info = find_var_info(&group_element);
|
||||
if (info == NULL) {
|
||||
// we don't have any info on how to load it
|
||||
return false;
|
||||
}
|
||||
|
||||
struct Param_header phdr;
|
||||
|
||||
// create the header we will use to match the variable
|
||||
phdr.type = pgm_read_byte(&info->type);
|
||||
phdr.key = pgm_read_word(&info->key);
|
||||
phdr.group_element = group_element;
|
||||
|
||||
// scan EEPROM to find the right location
|
||||
uint16_t ofs;
|
||||
if (!scan(&phdr, &ofs)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// found it
|
||||
eeprom_read_block(this, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Load all variables from EEPROM
|
||||
//
|
||||
bool AP_Param::load_all(void)
|
||||
{
|
||||
struct Param_header phdr;
|
||||
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
|
||||
while (ofs < k_EEPROM_size) {
|
||||
eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr));
|
||||
if (phdr.type == AP_PARAM_NONE &&
|
||||
phdr.key == 0) {
|
||||
// we've reached the sentinal
|
||||
return true;
|
||||
}
|
||||
|
||||
const struct AP_Param::Info *info;
|
||||
void *ptr;
|
||||
|
||||
info = find_by_header(phdr, &ptr);
|
||||
if (info != NULL) {
|
||||
eeprom_read_block(ptr, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type));
|
||||
}
|
||||
|
||||
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
|
||||
}
|
||||
|
||||
// we didn't find the sentinal
|
||||
serialDebug("no sentinal in load_all");
|
||||
return false;
|
||||
}
|
|
@ -0,0 +1,374 @@
|
|||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
//
|
||||
// This is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License as published by the
|
||||
// Free Software Foundation; either version 2.1 of the License, or (at
|
||||
// your option) any later version.
|
||||
//
|
||||
|
||||
/// @file AP_Param.h
|
||||
/// @brief A system for managing and storing variables that are of
|
||||
/// general interest to the system.
|
||||
|
||||
#ifndef AP_PARAM_H
|
||||
#define AP_PARAM_H
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <avr/pgmspace.h>
|
||||
#include <avr/eeprom.h>
|
||||
#include <AP_Math.h>
|
||||
|
||||
#define AP_MAX_NAME_SIZE 15
|
||||
|
||||
// a varient of offsetof() to work around C++ restrictions.
|
||||
// this can only be used when the offset of a variable in a object
|
||||
// is constant and known at compile time
|
||||
#define VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1)
|
||||
|
||||
enum ap_var_type {
|
||||
AP_PARAM_NONE = 0,
|
||||
AP_PARAM_INT8,
|
||||
AP_PARAM_INT16,
|
||||
AP_PARAM_INT32,
|
||||
AP_PARAM_FLOAT,
|
||||
AP_PARAM_VECTOR3F,
|
||||
AP_PARAM_VECTOR6F,
|
||||
AP_PARAM_MATRIX3F,
|
||||
AP_PARAM_GROUP
|
||||
};
|
||||
|
||||
/// Base class for variables.
|
||||
///
|
||||
/// Provides naming and lookup services for variables.
|
||||
///
|
||||
class AP_Param
|
||||
{
|
||||
public:
|
||||
/// EEPROM header
|
||||
///
|
||||
/// This structure is placed at the head of the EEPROM to indicate
|
||||
/// that the ROM is formatted for AP_Param.
|
||||
///
|
||||
struct EEPROM_header {
|
||||
uint16_t magic;
|
||||
uint8_t revision;
|
||||
uint8_t spare;
|
||||
};
|
||||
|
||||
/// This header is prepended to a variable stored in EEPROM.
|
||||
struct Param_header {
|
||||
uint16_t type:4;
|
||||
uint16_t key:9;
|
||||
uint16_t group_element:3;
|
||||
};
|
||||
|
||||
// the Info and GroupInfo structures are passed by the main
|
||||
// program in setup() to give information on how variables are
|
||||
// named and their location in memory
|
||||
struct GroupInfo {
|
||||
uint8_t type; // AP_PARAM_*
|
||||
const char name[AP_MAX_NAME_SIZE];
|
||||
uintptr_t offset; // offset within the object
|
||||
};
|
||||
struct Info {
|
||||
uint8_t type; // AP_PARAM_*
|
||||
const char name[AP_MAX_NAME_SIZE];
|
||||
uint16_t key; // k_param_*
|
||||
void *ptr; // pointer to the variable in memory
|
||||
const struct GroupInfo *group_info;
|
||||
};
|
||||
|
||||
// every AP_Param type has a vtype which tells its type. This is
|
||||
// used to make the initialisation of var_info[] less error prone
|
||||
static const ap_var_type vtype = AP_PARAM_NONE;
|
||||
|
||||
// called once at startup to setup the _var_info[] table. This
|
||||
// will also check the EEPROM header and re-initialise it if the
|
||||
// wrong version is found
|
||||
static bool setup(const struct Info *info, uint16_t num_vars);
|
||||
|
||||
/// Copy the variable's name, prefixed by any containing group name, to a buffer.
|
||||
///
|
||||
/// If the variable has no name, the buffer will contain an empty string.
|
||||
///
|
||||
/// Note that if the combination of names is larger than the buffer, the
|
||||
/// result in the buffer will be truncated.
|
||||
///
|
||||
/// @param buffer The destination buffer
|
||||
/// @param bufferSize Total size of the destination buffer.
|
||||
///
|
||||
void copy_name(char *buffer, size_t bufferSize);
|
||||
|
||||
/// Find a variable by name.
|
||||
///
|
||||
/// If the variable has no name, it cannot be found by this interface.
|
||||
///
|
||||
/// @param name The full name of the variable to be found.
|
||||
/// @return A pointer to the variable, or NULL if
|
||||
/// it does not exist.
|
||||
///
|
||||
static AP_Param *find(const char *name);
|
||||
|
||||
/// Save the current value of the variable to EEPROM.
|
||||
///
|
||||
/// @return True if the variable was saved successfully.
|
||||
///
|
||||
bool save(void);
|
||||
|
||||
/// Load the variable from EEPROM.
|
||||
///
|
||||
/// @return True if the variable was loaded successfully.
|
||||
///
|
||||
bool load(void);
|
||||
|
||||
/// Load all variables from EEPROM
|
||||
///
|
||||
/// This function performs a best-efforts attempt to load all
|
||||
/// of the variables from EEPROM. If some fail to load, their
|
||||
/// values will remain as they are.
|
||||
///
|
||||
/// @return False if any variable failed to load
|
||||
///
|
||||
static bool load_all(void);
|
||||
|
||||
/// Erase all variables in EEPROM.
|
||||
///
|
||||
static void erase_all(void);
|
||||
|
||||
|
||||
private:
|
||||
const struct Info *find_var_info(uint8_t *group_element);
|
||||
static const struct Info *find_by_header(struct Param_header phdr, void **ptr);
|
||||
static void write_sentinal(uint16_t ofs);
|
||||
bool scan(const struct Param_header *phdr, uint16_t *pofs);
|
||||
static const uint8_t type_size(enum ap_var_type type);
|
||||
static void eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size);
|
||||
|
||||
static uint16_t _num_vars;
|
||||
static const struct Info *_var_info;
|
||||
|
||||
static const uint16_t k_EEPROM_size = 4096; ///< XXX avr-libc doesn't consistently export this
|
||||
|
||||
// values filled into the EEPROM header
|
||||
static const uint16_t k_EEPROM_magic = 0x5041; ///< "AP"
|
||||
static const uint16_t k_EEPROM_revision = 3; ///< current format revision
|
||||
};
|
||||
|
||||
/// Template class for scalar variables.
|
||||
///
|
||||
/// Objects of this type have a value, and can be treated in many ways as though they
|
||||
/// were the value.
|
||||
///
|
||||
/// @tparam T The scalar type of the variable
|
||||
/// @tparam PT The AP_PARAM_* type
|
||||
///
|
||||
template<typename T, ap_var_type PT>
|
||||
class AP_ParamT : public AP_Param
|
||||
{
|
||||
public:
|
||||
/// Constructor for scalar variable.
|
||||
///
|
||||
/// Initialises a stand-alone variable with optional initial value.
|
||||
///
|
||||
/// @param default_value Value the variable should have at startup.
|
||||
///
|
||||
AP_ParamT<T,PT> (const T initial_value = 0) :
|
||||
AP_Param(),
|
||||
_value(initial_value)
|
||||
{
|
||||
}
|
||||
|
||||
static const ap_var_type vtype = PT;
|
||||
|
||||
/// Value getter
|
||||
///
|
||||
T get(void) const {
|
||||
return _value;
|
||||
}
|
||||
|
||||
/// Value setter
|
||||
///
|
||||
void set(T v) {
|
||||
_value = v;
|
||||
}
|
||||
|
||||
/// Combined set and save
|
||||
///
|
||||
bool set_and_save(T v) {
|
||||
set(v);
|
||||
return save();
|
||||
}
|
||||
|
||||
/// Conversion to T returns a reference to the value.
|
||||
///
|
||||
/// This allows the class to be used in many situations where the value would be legal.
|
||||
///
|
||||
operator T &() {
|
||||
return _value;
|
||||
}
|
||||
|
||||
/// Copy assignment from self does nothing.
|
||||
///
|
||||
AP_ParamT<T,PT>& operator=(AP_ParamT<T,PT>& v) {
|
||||
return v;
|
||||
}
|
||||
|
||||
/// Copy assignment from T is equivalent to ::set.
|
||||
///
|
||||
AP_ParamT<T,PT>& operator=(T v) {
|
||||
_value = v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// AP_ParamT types can implement AP_Param::cast_to_float
|
||||
///
|
||||
float cast_to_float(void) {
|
||||
return (float)_value;
|
||||
}
|
||||
|
||||
protected:
|
||||
T _value;
|
||||
};
|
||||
|
||||
|
||||
/// Template class for non-scalar variables.
|
||||
///
|
||||
/// Objects of this type have a value, and can be treated in many ways as though they
|
||||
/// were the value.
|
||||
///
|
||||
/// @tparam T The scalar type of the variable
|
||||
/// @tparam PT AP_PARAM_* type
|
||||
///
|
||||
template<typename T, ap_var_type PT>
|
||||
class AP_ParamV : public AP_Param
|
||||
{
|
||||
public:
|
||||
static const ap_var_type vtype = PT;
|
||||
|
||||
/// Value getter
|
||||
///
|
||||
T get(void) const {
|
||||
return _value;
|
||||
}
|
||||
|
||||
/// Value setter
|
||||
///
|
||||
void set(T v) {
|
||||
_value = v;
|
||||
}
|
||||
|
||||
/// Combined set and save
|
||||
///
|
||||
bool set_and_save(T v) {
|
||||
set(v);
|
||||
return save();
|
||||
}
|
||||
|
||||
/// Conversion to T returns a reference to the value.
|
||||
///
|
||||
/// This allows the class to be used in many situations where the value would be legal.
|
||||
///
|
||||
operator T &() {
|
||||
return _value;
|
||||
}
|
||||
|
||||
/// Copy assignment from self does nothing.
|
||||
///
|
||||
AP_ParamT<T,PT>& operator=(AP_ParamT<T,PT>& v) {
|
||||
return v;
|
||||
}
|
||||
|
||||
/// Copy assignment from T is equivalent to ::set.
|
||||
///
|
||||
AP_ParamT<T,PT>& operator=(T v) {
|
||||
_value = v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
T _value;
|
||||
};
|
||||
|
||||
|
||||
/// Template class for array variables.
|
||||
///
|
||||
/// Objects created using this template behave like arrays of the type T,
|
||||
/// but are stored like single variables.
|
||||
///
|
||||
/// @tparam T The scalar type of the variable
|
||||
/// @tparam N number of elements
|
||||
/// @tparam PT the AP_PARAM_* type
|
||||
///
|
||||
template<typename T, uint8_t N, ap_var_type PT>
|
||||
class AP_ParamA : public AP_Param
|
||||
{
|
||||
public:
|
||||
static const ap_var_type vtype = PT;
|
||||
|
||||
/// Array operator accesses members.
|
||||
///
|
||||
/// @note It would be nice to range-check i here, but then what would we return?
|
||||
///
|
||||
T &operator [](uint8_t i) {
|
||||
return _value[i];
|
||||
}
|
||||
|
||||
/// Value getter
|
||||
///
|
||||
/// @note Returns zero for index values out of range.
|
||||
///
|
||||
T get(uint8_t i) const {
|
||||
if (i < N) {
|
||||
return _value[i];
|
||||
} else {
|
||||
return (T)0;
|
||||
}
|
||||
}
|
||||
|
||||
/// Value setter
|
||||
///
|
||||
/// @note Attempts to set an index out of range are discarded.
|
||||
///
|
||||
void set(uint8_t i, T v) {
|
||||
if (i < N) {
|
||||
_value[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
/// Copy assignment from self does nothing.
|
||||
///
|
||||
AP_ParamA<T,N,PT>& operator=(AP_ParamA<T,N,PT>& v) {
|
||||
return v;
|
||||
}
|
||||
|
||||
protected:
|
||||
T _value[N];
|
||||
};
|
||||
|
||||
|
||||
|
||||
/// Convenience macro for defining instances of the AP_ParamT template.
|
||||
///
|
||||
#define AP_PARAMDEF(_t, _n, _pt) typedef AP_ParamT<_t, _pt> AP_##_n;
|
||||
AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float
|
||||
AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8
|
||||
AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16
|
||||
AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32
|
||||
|
||||
#define AP_PARAMDEFV(_t, _n, _pt) typedef AP_ParamV<_t, _pt> AP_##_n;
|
||||
AP_PARAMDEFV(Matrix3f, Matrix3f, AP_PARAM_MATRIX3F);
|
||||
AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F);
|
||||
|
||||
#define AP_PARAMDEFA(_t, _n, _size, _pt) typedef AP_ParamA<_t, _size, _pt> AP_##_n;
|
||||
AP_PARAMDEFA(float, Vector6f, 6, AP_PARAM_VECTOR6F);
|
||||
|
||||
/// Rely on built in casting for other variable types
|
||||
/// to minimize template creation and save memory
|
||||
#define AP_Uint8 AP_Int8
|
||||
#define AP_Uint16 AP_Int16
|
||||
#define AP_Uint32 AP_Int32
|
||||
#define AP_Bool AP_Int8
|
||||
|
||||
#endif // AP_PARAM_H
|
Loading…
Reference in New Issue