uncrustify libraries/AP_Baro/AP_Baro_BMP085.cpp

This commit is contained in:
uncrustify 2012-08-16 23:09:23 -07:00 committed by Pat Hickey
parent b0003c020f
commit 5a99d6b697
1 changed files with 135 additions and 135 deletions

View File

@ -1,53 +1,53 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
APM_BMP085.cpp - Arduino Library for BMP085 absolute pressure sensor
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to I2C port
Sensor End of Conversion (EOC) pin is PC7 (30)
Variables:
RawTemp : Raw temperature data
RawPress : Raw pressure data
Temp : Calculated temperature (in 0.1<EFBFBD>C units)
Press : Calculated pressure (in Pa units)
Methods:
Init() : Initialization of I2C and read sensor calibration data
Read() : Read sensor data and calculate Temperature and Pressure
This function is optimized so the main host don<EFBFBD>t need to wait
You can call this function in your main loop
It returns a 1 if there are new data.
Internal functions:
Command_ReadTemp(): Send commando to read temperature
Command_ReadPress(): Send commando to read Pressure
ReadTemp() : Read temp register
ReadPress() : Read press register
Calculate() : Calculate Temperature and Pressure in real units
*/
* APM_BMP085.cpp - Arduino Library for BMP085 absolute pressure sensor
* Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Sensor is conected to I2C port
* Sensor End of Conversion (EOC) pin is PC7 (30)
*
* Variables:
* RawTemp : Raw temperature data
* RawPress : Raw pressure data
*
* Temp : Calculated temperature (in 0.1<EFBFBD>C units)
* Press : Calculated pressure (in Pa units)
*
* Methods:
* Init() : Initialization of I2C and read sensor calibration data
* Read() : Read sensor data and calculate Temperature and Pressure
* This function is optimized so the main host don<EFBFBD>t need to wait
* You can call this function in your main loop
* It returns a 1 if there are new data.
*
* Internal functions:
* Command_ReadTemp(): Send commando to read temperature
* Command_ReadPress(): Send commando to read Pressure
* ReadTemp() : Read temp register
* ReadPress() : Read press register
* Calculate() : Calculate Temperature and Pressure in real units
*
*
*/
extern "C" {
// AVR LibC Includes
#include <inttypes.h>
#include <avr/interrupt.h>
// AVR LibC Includes
#include <inttypes.h>
#include <avr/interrupt.h>
}
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#include "Arduino.h"
#else
#include "WConstants.h"
#include "WConstants.h"
#endif
#include <AP_Common.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <I2C.h>
#include "AP_Baro_BMP085.h"
@ -58,7 +58,7 @@ extern "C" {
// chip using a direct IO port
// On APM2 prerelease hw, the data ready port is hooked up to PE7, which
// is not available to the arduino digitalRead function.
#define BMP_DATA_READY() (_apm2_hardware?(PINE&0x80):digitalRead(BMP085_EOC))
#define BMP_DATA_READY() (_apm2_hardware ? (PINE&0x80) : digitalRead(BMP085_EOC))
// oversampling 3 gives highest resolution
#define OVERSAMPLING 3
@ -66,66 +66,66 @@ extern "C" {
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Baro_BMP085::init( AP_PeriodicProcess * scheduler )
{
byte buff[22];
byte buff[22];
pinMode(BMP085_EOC, INPUT); // End Of Conversion (PC7) input
pinMode(BMP085_EOC, INPUT); // End Of Conversion (PC7) input
BMP085_State = 0; // Initial state
BMP085_State = 0; // Initial state
// We read the calibration data registers
if (I2c.read(BMP085_ADDRESS, 0xAA, 22, buff) != 0) {
healthy = false;
return false;
}
// We read the calibration data registers
if (I2c.read(BMP085_ADDRESS, 0xAA, 22, buff) != 0) {
healthy = false;
return false;
}
ac1 = ((int)buff[0] << 8) | buff[1];
ac2 = ((int)buff[2] << 8) | buff[3];
ac3 = ((int)buff[4] << 8) | buff[5];
ac4 = ((int)buff[6] << 8) | buff[7];
ac5 = ((int)buff[8] << 8) | buff[9];
ac6 = ((int)buff[10] << 8) | buff[11];
b1 = ((int)buff[12] << 8) | buff[13];
b2 = ((int)buff[14] << 8) | buff[15];
mb = ((int)buff[16] << 8) | buff[17];
mc = ((int)buff[18] << 8) | buff[19];
md = ((int)buff[20] << 8) | buff[21];
ac1 = ((int)buff[0] << 8) | buff[1];
ac2 = ((int)buff[2] << 8) | buff[3];
ac3 = ((int)buff[4] << 8) | buff[5];
ac4 = ((int)buff[6] << 8) | buff[7];
ac5 = ((int)buff[8] << 8) | buff[9];
ac6 = ((int)buff[10] << 8) | buff[11];
b1 = ((int)buff[12] << 8) | buff[13];
b2 = ((int)buff[14] << 8) | buff[15];
mb = ((int)buff[16] << 8) | buff[17];
mc = ((int)buff[18] << 8) | buff[19];
md = ((int)buff[20] << 8) | buff[21];
//Send a command to read Temp
Command_ReadTemp();
BMP085_State = 1;
//Send a command to read Temp
Command_ReadTemp();
BMP085_State = 1;
// init raw temo
RawTemp = 0;
// init raw temo
RawTemp = 0;
healthy = true;
return true;
healthy = true;
return true;
}
// Read the sensor. This is a state machine
// We read Temperature (state=1) and then Pressure (state!=1) on alternate calls
uint8_t AP_Baro_BMP085::read()
{
uint8_t result = 0;
uint8_t result = 0;
if (BMP085_State == 1){
if (BMP_DATA_READY()){
BMP085_State = 2;
ReadTemp(); // On state 1 we read temp
Command_ReadPress();
}
}else{
if (BMP_DATA_READY()){
BMP085_State = 1; // Start again from state = 1
ReadPress();
Calculate();
Command_ReadTemp(); // Read Temp
result = 1; // New pressure reading
}
}
if (BMP085_State == 1) {
if (BMP_DATA_READY()) {
BMP085_State = 2;
ReadTemp(); // On state 1 we read temp
Command_ReadPress();
}
}else{
if (BMP_DATA_READY()) {
BMP085_State = 1; // Start again from state = 1
ReadPress();
Calculate();
Command_ReadTemp(); // Read Temp
result = 1; // New pressure reading
}
}
if (result) {
_last_update = millis();
}
return(result);
return(result);
}
float AP_Baro_BMP085::get_pressure() {
@ -149,94 +149,94 @@ int32_t AP_Baro_BMP085::get_raw_temp() {
// Send command to Read Pressure
void AP_Baro_BMP085::Command_ReadPress()
{
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x34+(OVERSAMPLING << 6)) != 0) {
healthy = false;
}
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x34+(OVERSAMPLING << 6)) != 0) {
healthy = false;
}
}
// Read Raw Pressure values
void AP_Baro_BMP085::ReadPress()
{
uint8_t buf[3];
uint8_t buf[3];
if (!healthy && millis() < _retry_time) {
return;
}
if (I2c.read(BMP085_ADDRESS, 0xF6, 3, buf) != 0) {
if (I2c.read(BMP085_ADDRESS, 0xF6, 3, buf) != 0) {
_retry_time = millis() + 1000;
I2c.setSpeed(false);
healthy = false;
return;
}
healthy = false;
return;
}
RawPress = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING);
RawPress = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING);
}
// Send Command to Read Temperature
void AP_Baro_BMP085::Command_ReadTemp()
{
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x2E) != 0) {
healthy = false;
}
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x2E) != 0) {
healthy = false;
}
}
// Read Raw Temperature values
void AP_Baro_BMP085::ReadTemp()
{
uint8_t buf[2];
int32_t _temp_sensor;
uint8_t buf[2];
int32_t _temp_sensor;
if (!healthy && millis() < _retry_time) {
return;
}
if (I2c.read(BMP085_ADDRESS, 0xF6, 2, buf) != 0) {
if (I2c.read(BMP085_ADDRESS, 0xF6, 2, buf) != 0) {
_retry_time = millis() + 1000;
I2c.setSpeed(false);
healthy = false;
return;
}
_temp_sensor = buf[0];
_temp_sensor = (_temp_sensor << 8) | buf[1];
healthy = false;
return;
}
_temp_sensor = buf[0];
_temp_sensor = (_temp_sensor << 8) | buf[1];
RawTemp = _temp_filter.apply(_temp_sensor);
RawTemp = _temp_filter.apply(_temp_sensor);
}
// Calculate Temperature and Pressure in real units.
void AP_Baro_BMP085::Calculate()
{
int32_t x1, x2, x3, b3, b5, b6, p;
uint32_t b4, b7;
int32_t tmp;
int32_t x1, x2, x3, b3, b5, b6, p;
uint32_t b4, b7;
int32_t tmp;
// See Datasheet page 13 for this formulas
// Based also on Jee Labs BMP085 example code. Thanks for share.
// Temperature calculations
x1 = ((int32_t)RawTemp - ac6) * ac5 >> 15;
x2 = ((int32_t) mc << 11) / (x1 + md);
b5 = x1 + x2;
Temp = (b5 + 8) >> 4;
// See Datasheet page 13 for this formulas
// Based also on Jee Labs BMP085 example code. Thanks for share.
// Temperature calculations
x1 = ((int32_t)RawTemp - ac6) * ac5 >> 15;
x2 = ((int32_t) mc << 11) / (x1 + md);
b5 = x1 + x2;
Temp = (b5 + 8) >> 4;
// Pressure calculations
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
//b3 = (((int32_t) ac1 * 4 + x3)<<OVERSAMPLING + 2) >> 2; // BAD
//b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0
tmp = ac1;
tmp = (tmp*4 + x3)<<OVERSAMPLING;
b3 = (tmp+2)/4;
x1 = ac3 * b6 >> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15;
b7 = ((uint32_t) RawPress - b3) * (50000 >> OVERSAMPLING);
p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2;
// Pressure calculations
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
//b3 = (((int32_t) ac1 * 4 + x3)<<OVERSAMPLING + 2) >> 2; // BAD
//b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0
tmp = ac1;
tmp = (tmp*4 + x3)<<OVERSAMPLING;
b3 = (tmp+2)/4;
x1 = ac3 * b6 >> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15;
b7 = ((uint32_t) RawPress - b3) * (50000 >> OVERSAMPLING);
p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
Press = p + ((x1 + x2 + 3791) >> 4);
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
Press = p + ((x1 + x2 + 3791) >> 4);
}