mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-02-10 01:44:00 -04:00
AP_NavEKF3: separate GPS yaw from ExtNav yaw
This commit is contained in:
parent
6850b48ea1
commit
5891c6ace8
@ -491,6 +491,9 @@ bool AP_NavEKF_Source::ext_nav_enabled(void) const
|
||||
if (src.velz == SourceZ::EXTNAV) {
|
||||
return true;
|
||||
}
|
||||
if (src.yaw == SourceYaw::EXTNAV) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -531,6 +531,9 @@ bool NavEKF3_core::using_external_yaw(void) const
|
||||
if (yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL || yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK || !use_compass()) {
|
||||
return imuSampleTime_ms - last_gps_yaw_fusion_ms < 5000 || imuSampleTime_ms - lastSynthYawTime_ms < 5000;
|
||||
}
|
||||
if (yaw_source == AP_NavEKF_Source::SourceYaw::EXTNAV) {
|
||||
return ((imuSampleTime_ms - last_extnav_yaw_fusion_ms < 5000) || (imuSampleTime_ms - lastSynthYawTime_ms < 5000));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -595,7 +598,8 @@ void NavEKF3_core::checkGyroCalStatus(void)
|
||||
// check delta angle bias variances
|
||||
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg));
|
||||
const AP_NavEKF_Source::SourceYaw yaw_source = frontend->sources.getYawSource();
|
||||
if (!use_compass() && (yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL) && (yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK)) {
|
||||
if (!use_compass() && (yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL) && (yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK) &&
|
||||
(yaw_source != AP_NavEKF_Source::SourceYaw::EXTNAV)) {
|
||||
// rotate the variances into earth frame and evaluate horizontal terms only as yaw component is poorly observable without a yaw reference
|
||||
// which can make this check fail
|
||||
Vector3f delAngBiasVarVec = Vector3f(P[10][10],P[11][11],P[12][12]);
|
||||
|
@ -176,10 +176,11 @@ void NavEKF3_core::realignYawGPS()
|
||||
}
|
||||
}
|
||||
|
||||
void NavEKF3_core::alignYawAngle()
|
||||
// align the yaw angle for the quaternion states to the given yaw angle which should be at the fusion horizon
|
||||
void NavEKF3_core::alignYawAngle(const yaw_elements &yawAngData)
|
||||
{
|
||||
// update quaternion states and covariances
|
||||
resetQuatStateYawOnly(yawAngDataDelayed.yawAng, sq(MAX(yawAngDataDelayed.yawAngErr, 1.0e-2f)), yawAngDataDelayed.order);
|
||||
resetQuatStateYawOnly(yawAngData.yawAng, sq(MAX(yawAngData.yawAngErr, 1.0e-2f)), yawAngData.order);
|
||||
|
||||
// send yaw alignment information to console
|
||||
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned",(unsigned)imu_index);
|
||||
@ -222,7 +223,8 @@ void NavEKF3_core::SelectMagFusion()
|
||||
// flight using the output from the GSF yaw estimator.
|
||||
if (!use_compass() &&
|
||||
yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL &&
|
||||
yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK) {
|
||||
yaw_source != AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK &&
|
||||
yaw_source != AP_NavEKF_Source::SourceYaw::EXTNAV) {
|
||||
|
||||
// because this type of reset event is not as time critical, require a continuous history of valid estimates
|
||||
if ((!yawAlignComplete || yaw_source_reset) && EKFGSF_yaw_valid_count >= GSF_YAW_VALID_HISTORY_THRESHOLD) {
|
||||
@ -255,12 +257,12 @@ void NavEKF3_core::SelectMagFusion()
|
||||
return;
|
||||
}
|
||||
|
||||
// Handle case where we are using an external yaw sensor instead of a magnetomer
|
||||
// Handle case where we are using GPS yaw sensor instead of a magnetomer
|
||||
if (yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL || yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK) {
|
||||
bool have_fused_gps_yaw = false;
|
||||
if (storedYawAng.recall(yawAngDataDelayed,imuDataDelayed.time_ms)) {
|
||||
if (tiltAlignComplete && (!yawAlignComplete || yaw_source_reset)) {
|
||||
alignYawAngle();
|
||||
alignYawAngle(yawAngDataDelayed);
|
||||
yaw_source_reset = false;
|
||||
} else if (tiltAlignComplete && yawAlignComplete) {
|
||||
fuseEulerYaw(yawFusionMethod::EXTERNAL);
|
||||
@ -323,6 +325,34 @@ void NavEKF3_core::SelectMagFusion()
|
||||
// fall through to magnetometer fusion
|
||||
}
|
||||
|
||||
// Handle case where we are using an external nav for yaw
|
||||
const bool extNavYawDataToFuse = storedExtNavYawAng.recall(extNavYawAngDataDelayed, imuDataDelayed.time_ms);
|
||||
if (yaw_source == AP_NavEKF_Source::SourceYaw::EXTNAV) {
|
||||
if (extNavYawDataToFuse) {
|
||||
if (tiltAlignComplete && (!yawAlignComplete || yaw_source_reset)) {
|
||||
alignYawAngle(extNavYawAngDataDelayed);
|
||||
yaw_source_reset = false;
|
||||
} else if (tiltAlignComplete && yawAlignComplete) {
|
||||
fuseEulerYaw(yawFusionMethod::EXTNAV);
|
||||
}
|
||||
last_extnav_yaw_fusion_ms = imuSampleTime_ms;
|
||||
} else if (tiltAlignComplete && !yawAlignComplete) {
|
||||
// External yaw sources can take significant time to start providing yaw data so
|
||||
// while waiting, fuse a 'fake' yaw observation at 7Hz to keep the filter stable
|
||||
if (imuSampleTime_ms - lastSynthYawTime_ms > 140) {
|
||||
// update the yaw angle using the last estimate which will be used as a static yaw reference when movement stops
|
||||
if (!onGroundNotMoving) {
|
||||
// prevent uncontrolled yaw variance growth by fusing a zero innovation
|
||||
fuseEulerYaw(yawFusionMethod::PREDICTED);
|
||||
} else {
|
||||
// fuse last known good yaw angle before we stopped moving to allow yaw bias learning when on ground before flight
|
||||
fuseEulerYaw(yawFusionMethod::STATIC);
|
||||
}
|
||||
lastSynthYawTime_ms = imuSampleTime_ms;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
|
||||
if (magHealth) {
|
||||
magTimeout = false;
|
||||
@ -873,6 +903,10 @@ bool NavEKF3_core::fuseEulerYaw(yawFusionMethod method)
|
||||
default:
|
||||
R_YAW = sq(frontend->_yawNoise);
|
||||
break;
|
||||
|
||||
case yawFusionMethod::EXTNAV:
|
||||
R_YAW = sq(MAX(extNavYawAngDataDelayed.yawAngErr, 0.05f));
|
||||
break;
|
||||
}
|
||||
|
||||
// determine if a 321 or 312 Euler sequence is best
|
||||
@ -893,6 +927,10 @@ bool NavEKF3_core::fuseEulerYaw(yawFusionMethod method)
|
||||
// determined automatically
|
||||
order = (fabsf(prevTnb[0][2]) < fabsf(prevTnb[1][2])) ? rotationOrder::TAIT_BRYAN_321 : rotationOrder::TAIT_BRYAN_312;
|
||||
break;
|
||||
|
||||
case yawFusionMethod::EXTNAV:
|
||||
order = extNavYawAngDataDelayed.order;
|
||||
break;
|
||||
}
|
||||
|
||||
// calculate observation jacobian, predicted yaw and zero yaw body to earth rotation matrix
|
||||
@ -1054,6 +1092,10 @@ bool NavEKF3_core::fuseEulerYaw(yawFusionMethod method)
|
||||
innovYaw = 0.0f;
|
||||
break;
|
||||
|
||||
case yawFusionMethod::EXTNAV:
|
||||
// both external sensor yaw and last yaw when static are stored in yawAngDataDelayed.yawAng
|
||||
innovYaw = wrap_PI(yawAngPredicted - extNavYawAngDataDelayed.yawAng);
|
||||
break;
|
||||
}
|
||||
|
||||
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero
|
||||
|
@ -1028,10 +1028,12 @@ void NavEKF3_core::writeExtNavData(const Vector3f &pos, const Quaternion &quat,
|
||||
// extract yaw from the attitude
|
||||
float roll_rad, pitch_rad, yaw_rad;
|
||||
quat.to_euler(roll_rad, pitch_rad, yaw_rad);
|
||||
|
||||
// ensure yaw accuracy is no better than 5 degrees (some callers may send zero)
|
||||
const float yaw_accuracy_rad = MAX(angErr, radians(5.0f));
|
||||
writeEulerYawAngle(yaw_rad, yaw_accuracy_rad, timeStamp_ms, 2);
|
||||
yaw_elements extNavYawAngDataNew;
|
||||
extNavYawAngDataNew.yawAng = yaw_rad;
|
||||
extNavYawAngDataNew.yawAngErr = MAX(angErr, radians(5.0f)); // ensure yaw accuracy is no better than 5 degrees (some callers may send zero)
|
||||
extNavYawAngDataNew.order = rotationOrder::TAIT_BRYAN_321; // Euler rotation order is 321 (ZYX)
|
||||
extNavYawAngDataNew.time_ms = timeStamp_ms;
|
||||
storedExtNavYawAng.push(extNavYawAngDataNew);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1288,7 +1290,8 @@ float NavEKF3_core::MagDeclination(void) const
|
||||
void NavEKF3_core::updateMovementCheck(void)
|
||||
{
|
||||
const AP_NavEKF_Source::SourceYaw yaw_source = frontend->sources.getYawSource();
|
||||
const bool runCheck = onGround && (yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL || yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK || !use_compass());
|
||||
const bool runCheck = onGround && (yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL || yaw_source == AP_NavEKF_Source::SourceYaw::EXTERNAL_COMPASS_FALLBACK ||
|
||||
yaw_source == AP_NavEKF_Source::SourceYaw::EXTNAV || !use_compass());
|
||||
if (!runCheck)
|
||||
{
|
||||
onGroundNotMoving = false;
|
||||
|
@ -101,9 +101,6 @@ bool NavEKF3_core::setup_core(uint8_t _imu_index, uint8_t _core_index)
|
||||
// calculate buffer size for external nav data
|
||||
const uint8_t extnav_buffer_length = MIN((ekf_delay_ms / frontend->extNavIntervalMin_ms) + 1, imu_buffer_length);
|
||||
|
||||
// buffer size for external yaw
|
||||
const uint8_t yaw_angle_buffer_length = MAX(obs_buffer_length, extnav_buffer_length);
|
||||
|
||||
if(!storedGPS.init(obs_buffer_length)) {
|
||||
return false;
|
||||
}
|
||||
@ -126,7 +123,7 @@ bool NavEKF3_core::setup_core(uint8_t _imu_index, uint8_t _core_index)
|
||||
// initialise to same length of IMU to allow for multiple wheel sensors
|
||||
return false;
|
||||
}
|
||||
if(frontend->sources.ext_yaw_enabled() && !storedYawAng.init(yaw_angle_buffer_length)) {
|
||||
if(frontend->sources.ext_yaw_enabled() && !storedYawAng.init(obs_buffer_length)) {
|
||||
return false;
|
||||
}
|
||||
// Note: the use of dual range finders potentially doubles the amount of data to be stored
|
||||
@ -143,6 +140,9 @@ bool NavEKF3_core::setup_core(uint8_t _imu_index, uint8_t _core_index)
|
||||
if (frontend->sources.ext_nav_enabled() && !storedExtNavVel.init(extnav_buffer_length)) {
|
||||
return false;
|
||||
}
|
||||
if(frontend->sources.ext_nav_enabled() && !storedExtNavYawAng.init(extnav_buffer_length)) {
|
||||
return false;
|
||||
}
|
||||
if(!storedIMU.init(imu_buffer_length)) {
|
||||
return false;
|
||||
}
|
||||
@ -452,6 +452,7 @@ void NavEKF3_core::InitialiseVariablesMag()
|
||||
magFieldLearned = false;
|
||||
storedMag.reset();
|
||||
storedYawAng.reset();
|
||||
storedExtNavYawAng.reset();
|
||||
needMagBodyVarReset = false;
|
||||
needEarthBodyVarReset = false;
|
||||
}
|
||||
|
@ -625,6 +625,7 @@ private:
|
||||
GSF=2,
|
||||
STATIC=3,
|
||||
PREDICTED=4,
|
||||
EXTNAV=5,
|
||||
};
|
||||
|
||||
// update the navigation filter status
|
||||
@ -747,8 +748,8 @@ private:
|
||||
|
||||
// initialise the earth magnetic field states using declination and current attitude and magnetometer measurements
|
||||
|
||||
// align the yaw angle for the quaternion states using the external yaw sensor
|
||||
void alignYawAngle();
|
||||
// align the yaw angle for the quaternion states to the given yaw angle which should be at the fusion horizon
|
||||
void alignYawAngle(const yaw_elements &yawAngData);
|
||||
|
||||
// update mag field states and associated variances using magnetomer and declination data
|
||||
void resetMagFieldStates();
|
||||
@ -1344,6 +1345,9 @@ private:
|
||||
Vector3f extNavVelInnov; // external nav velocity innovations
|
||||
Vector3f extNavVelVarInnov; // external nav velocity innovation variances
|
||||
uint32_t extNavVelInnovTime_ms; // system time that external nav velocity innovations were recorded (to detect timeouts)
|
||||
EKF_obs_buffer_t<yaw_elements> storedExtNavYawAng; // external navigation yaw angle buffer
|
||||
yaw_elements extNavYawAngDataDelayed; // external navigation yaw angle at the fusion time horizon
|
||||
uint32_t last_extnav_yaw_fusion_ms; // system time that external nav yaw was last fused
|
||||
|
||||
// flags indicating severe numerical errors in innovation variance calculation for different fusion operations
|
||||
struct {
|
||||
|
Loading…
Reference in New Issue
Block a user