AC_AutoTune: cope with change in namespace of LogEvent enum

This commit is contained in:
Peter Barker 2019-11-02 09:07:25 +11:00 committed by Randy Mackay
parent 8686fb30f8
commit 561920aad6

View File

@ -168,7 +168,7 @@ bool AC_AutoTune::init_internals(bool _use_poshold,
if (success) { if (success) {
// reset gains to tuning-start gains (i.e. low I term) // reset gains to tuning-start gains (i.e. low I term)
load_gains(GAIN_INTRA_TEST); load_gains(GAIN_INTRA_TEST);
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_RESTART); AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART);
update_gcs(AUTOTUNE_MESSAGE_STARTED); update_gcs(AUTOTUNE_MESSAGE_STARTED);
} }
break; break;
@ -177,7 +177,7 @@ bool AC_AutoTune::init_internals(bool _use_poshold,
// we have completed a tune and the pilot wishes to test the new gains in the current flight mode // we have completed a tune and the pilot wishes to test the new gains in the current flight mode
// so simply apply tuning gains (i.e. do not change flight mode) // so simply apply tuning gains (i.e. do not change flight mode)
load_gains(GAIN_TUNED); load_gains(GAIN_TUNED);
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_PILOT_TESTING); AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING);
break; break;
} }
@ -196,7 +196,7 @@ void AC_AutoTune::stop()
attitude_control->use_sqrt_controller(true); attitude_control->use_sqrt_controller(true);
update_gcs(AUTOTUNE_MESSAGE_STOPPED); update_gcs(AUTOTUNE_MESSAGE_STOPPED);
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_OFF); AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF);
// Note: we leave the mode as it was so that we know how the autotune ended // Note: we leave the mode as it was so that we know how the autotune ended
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch // we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch
@ -862,7 +862,7 @@ void AC_AutoTune::control_attitude()
if (complete) { if (complete) {
mode = SUCCESS; mode = SUCCESS;
update_gcs(AUTOTUNE_MESSAGE_SUCCESS); update_gcs(AUTOTUNE_MESSAGE_SUCCESS);
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_SUCCESS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS);
AP_Notify::events.autotune_complete = true; AP_Notify::events.autotune_complete = true;
} else { } else {
AP_Notify::events.autotune_next_axis = true; AP_Notify::events.autotune_next_axis = true;
@ -954,7 +954,7 @@ void AC_AutoTune::backup_gains_and_initialise()
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_accel = attitude_control->get_accel_yaw_max(); tune_yaw_accel = attitude_control->get_accel_yaw_max();
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_INITIALISED); AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED);
} }
// load_orig_gains - set gains to their original values // load_orig_gains - set gains to their original values
@ -1213,7 +1213,7 @@ void AC_AutoTune::save_tuning_gains()
// update GCS and log save gains event // update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_SAVEDGAINS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
reset(); reset();
} }
@ -1398,7 +1398,7 @@ void AC_AutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune
// We have reached minimum D gain so stop tuning // We have reached minimum D gain so stop tuning
tune_d = tune_d_min; tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} }
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
@ -1407,7 +1407,7 @@ void AC_AutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune
tune_p += tune_p*tune_p_step_ratio; tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) { if (tune_p >= tune_p_max) {
tune_p = tune_p_max; tune_p = tune_p_max;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} else { } else {
// we have a good measurement of bounce back // we have a good measurement of bounce back
@ -1428,7 +1428,7 @@ void AC_AutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune
if (tune_d >= tune_d_max) { if (tune_d >= tune_d_max) {
tune_d = tune_d_max; tune_d = tune_d_max;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} else { } else {
ignore_next = false; ignore_next = false;
@ -1453,7 +1453,7 @@ void AC_AutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tu
// We have reached minimum D so stop tuning // We have reached minimum D so stop tuning
tune_d = tune_d_min; tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} }
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { } else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
@ -1462,7 +1462,7 @@ void AC_AutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tu
tune_p += tune_p*tune_p_step_ratio; tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) { if (tune_p >= tune_p_max) {
tune_p = tune_p_max; tune_p = tune_p_max;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} else { } else {
// we have a good measurement of bounce back // we have a good measurement of bounce back
@ -1486,7 +1486,7 @@ void AC_AutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tu
if (tune_d <= tune_d_min) { if (tune_d <= tune_d_min) {
tune_d = tune_d_min; tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} }
} }
@ -1511,14 +1511,14 @@ void AC_AutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, flo
// do not decrease the D term past the minimum // do not decrease the D term past the minimum
if (tune_d <= tune_d_min) { if (tune_d <= tune_d_min) {
tune_d = tune_d_min; tune_d = tune_d_min;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
// decrease P gain to match D gain reduction // decrease P gain to match D gain reduction
tune_p -= tune_p*tune_p_step_ratio; tune_p -= tune_p*tune_p_step_ratio;
// do not decrease the P term past the minimum // do not decrease the P term past the minimum
if (tune_p <= tune_p_min) { if (tune_p <= tune_p_min) {
tune_p = tune_p_min; tune_p = tune_p_min;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
// cancel change in direction // cancel change in direction
positive_direction = !positive_direction; positive_direction = !positive_direction;
@ -1534,7 +1534,7 @@ void AC_AutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, flo
if (tune_p >= tune_p_max) { if (tune_p >= tune_p_max) {
tune_p = tune_p_max; tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} else { } else {
ignore_next = false; ignore_next = false;
@ -1566,7 +1566,7 @@ void AC_AutoTune::updating_angle_p_down(float &tune_p, float tune_p_min, float t
if (tune_p <= tune_p_min) { if (tune_p <= tune_p_min) {
tune_p = tune_p_min; tune_p = tune_p_min;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} }
} }
@ -1593,7 +1593,7 @@ void AC_AutoTune::updating_angle_p_up(float &tune_p, float tune_p_max, float tun
if (tune_p >= tune_p_max) { if (tune_p >= tune_p_max) {
tune_p = tune_p_max; tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(Log_Event::DATA_AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
} else { } else {
ignore_next = false; ignore_next = false;