5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-14 12:48:31 -04:00

Fixed resolution issue with Xtrack

Added stub for loiter based on estimation
integrated fix for tracking GPS at slow speeds for loiter
This commit is contained in:
Jason Short 2011-12-23 14:40:54 -08:00
parent 2d46022a2b
commit 5518882c69

View File

@ -5,7 +5,6 @@
//****************************************************************
static byte navigate()
{
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
@ -22,6 +21,7 @@ static byte navigate()
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
home_to_copter_bearing = get_bearing(&home, &current_loc);
return 1;
}
@ -34,6 +34,29 @@ static bool check_missed_wp()
// ------------------------------
static void calc_XY_velocity(){
// offset calculation of GPS speed:
// used for estimations below 1.5m/s
// our GPS is about 1m per
static int last_longitude = 0;
static int last_latutude = 0;
// this speed is ~ in cm because we are using 10^7 numbers from GPS
x_GPS_speed = (last_longitude - g_gps->longitude) * dTnav;
y_GPS_speed = (last_latutude - g_gps->latitude) * dTnav;
last_longitude = g_gps->longitude;
last_latutude = g_gps->latitude;
if(g_gps->ground_speed > 150){
// Derive X/Y speed from GPS
// this is far more accurate when traveling about 1.5m/s
float temp = g_gps->ground_course * RADX100;
x_GPS_speed = sin(temp) * (float)g_gps->ground_speed;
y_GPS_speed = cos(temp) * (float)g_gps->ground_speed;
}
//Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed);
}
// long_error, lat_error
static void calc_location_error(struct Location *next_loc)
{
@ -55,40 +78,21 @@ static void calc_location_error(struct Location *next_loc)
}
#define NAV_ERR_MAX 800
#if LOITER_METHOD == 0
static void calc_loiter(int x_error, int y_error)
{
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX);
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX);
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
int x_target_speed = g.pi_loiter_lon.get_p(x_error);
int y_target_speed = g.pi_loiter_lat.get_p(y_error);
int x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav);
int y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav);
int x_target_speed = g.pi_loiter_lon.get_p(x_error);
int y_target_speed = g.pi_loiter_lat.get_p(y_error);
int x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav);
int y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav);
// find the rates:
float temp = g_gps->ground_course * RADX100;
#ifdef OPTFLOW_ENABLED
// calc the cos of the error to tell how fast we are moving towards the target in cm
if(g.optflow_enabled && current_loc.alt < 500 && g_gps->ground_speed < 150){
x_actual_speed = optflow.vlon * 10;
y_actual_speed = optflow.vlat * 10;
}else{
x_actual_speed = (float)g_gps->ground_speed * sin(temp);
y_actual_speed = (float)g_gps->ground_speed * cos(temp);
}
#else
x_actual_speed = (float)g_gps->ground_speed * sin(temp);
y_actual_speed = (float)g_gps->ground_speed * cos(temp);
#endif
y_rate_error = y_target_speed - y_actual_speed; // 413
y_rate_error = constrain(y_rate_error, -1000, 1000); // added a rate error limit to keep pitching down to a minimum
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav);
nav_lat = constrain(nav_lat, -3500, 3500);
nav_lat += y_iterm;
y_rate_error = y_target_speed - y_actual_speed; // 413
y_rate_error = constrain(y_rate_error, -1000, 1000); // added a rate error limit to keep pitching down to a minimum
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav);
nav_lat = constrain(nav_lat, -3500, 3500);
nav_lat += y_iterm;
/*Serial.printf("loiter x_actual_speed %d,\tx_rate_error: %d,\tnav_lon: %d,\ty_actual_speed %d,\ty_rate_error: %d,\tnav_lat: %d,\t",
x_actual_speed,
@ -98,67 +102,64 @@ static void calc_loiter(int x_error, int y_error)
y_rate_error,
nav_lat);
*/
x_rate_error = x_target_speed - x_actual_speed;
x_rate_error = constrain(x_rate_error, -1000, 1000);
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav);
nav_lon = constrain(nav_lon, -3500, 3500);
nav_lon += x_iterm;
x_rate_error = x_target_speed - x_actual_speed;
x_rate_error = constrain(x_rate_error, -1000, 1000);
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav);
nav_lon = constrain(nav_lon, -3500, 3500);
nav_lon += x_iterm;
}
#else
static void calc_loiter2(int x_error, int y_error)
#define ERR_GAIN .01
// called at 50hz
static void esitmate_velocity()
{
static int last_x_error = 0;
static int last_y_error = 0;
// for now we assume copter is pointing due north
// use roll to calculate the x velocity
//float scale = sin((float)nav_lon * RADX100)); // guess our X location based tilt of copter
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); //1200
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
// we need to extimate velocity when below GPS threshold of 1.5m/s
if(g_gps->ground_speed < 150){
// calc the cos of the error to tell how fast we are moving towards the target in cm
//if(g.optflow_enabled && current_loc.alt < 500){
// optflow wont be enabled on 1280's
// #ifdef OPTFLOW_ENABLED
//x_actual_speed = optflow.vlon * 10;
//y_actual_speed = optflow.vlat * 10;
// #endif
//}else{
int x_target_speed = g.pi_loiter_lon.get_p(x_error);
int y_target_speed = g.pi_loiter_lat.get_p(y_error);
// this area will have future IMU based velocity navigation,
// ignore these sketches.
int x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav);
int y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav);
// need to take into account the wind based on loiter's iterms
// x_actual_speed += thrust * sin_roll_y; // thrust is a guess, needs to be calibrated whith CH6
// x_actual_speed -= ERR_GAIN * (float)(x_actual_speed - x_GPS_speed); // error correction
// find the rates:
x_actual_speed = (float)(last_x_error - x_error)/dTnav;
y_actual_speed = (float)(last_y_error - y_error)/dTnav;
// y_actual_speed += thrust * sin_pitch_y; // thrust is a guess, needs to be calibrated whith CH6
// y_actual_speed -= ERR_GAIN * (float)(y_actual_speed - y_GPS_speed); // error correction
//}
// save speeds
last_x_error = x_error;
last_y_error = y_error;
y_rate_error = y_target_speed - y_actual_speed;
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav);
nav_lat = constrain(nav_lat, -2200, 2200);
nav_lat += y_iterm;
x_rate_error = x_target_speed - x_actual_speed;
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav);
nav_lon = constrain(nav_lon, -2200, 2200);
nav_lon += x_iterm;
// for now
x_actual_speed = x_GPS_speed;
y_actual_speed = y_GPS_speed;
}else{
x_actual_speed = x_GPS_speed;
y_actual_speed = y_GPS_speed;
}
}
#endif
// nav_roll, nav_pitch
// this calculation rotates our World frame of reference to the copter's frame of reference
// We use the DCM's matrix to precalculate these trig values at 50hz
static void calc_loiter_pitch_roll()
{
//float temp = radians((float)(9000 - (dcm.yaw_sensor))/100.0);
//float _cos_yaw_x = cos(temp);
//float _sin_yaw_y = sin(temp);
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y);
// rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
// flip pitch because forward is negative
nav_pitch = -nav_pitch;
//Serial.printf("nav_roll %d, nav_pitch %d\n",
// nav_roll, nav_pitch);
}
static void calc_nav_rate(int max_speed)
@ -190,7 +191,6 @@ static void calc_nav_rate(int max_speed)
max_speed = min(max_speed, waypoint_speed_gov);
}
//float temp = radians((target_bearing - g_gps->ground_course)/100.0);
float temp = (target_bearing - g_gps->ground_course) * RADX100;
// push us towards the original track
@ -201,15 +201,16 @@ static void calc_nav_rate(int max_speed)
x_rate_error = crosstrack_error -x_actual_speed;
x_rate_error = constrain(x_rate_error, -1400, 1400);
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
/*Serial.printf("max_speed %d,\tx_actual_speed %d,\tx_rate_error: %d,\tnav_lon: %d,\ty_actual_speed %d,\ty_rate_error: %d,\tnav_lat: %d,\t",
/*Serial.printf("max_sp %d,\tx_actual_sp %d,\tx_rate_err: %d, Xtrack %d, \tnav_lon: %d,\ty_actual_sp %d,\ty_rate_err: %d,\tnav_lat: %d,\n",
max_speed,
x_actual_speed,
x_rate_error,
crosstrack_error,
nav_lon,
y_actual_speed,
y_rate_error,
nav_lat);
*/
//*/
// heading towards target
y_actual_speed = cos(temp) * (float)g_gps->ground_speed;
@ -236,22 +237,23 @@ static void update_crosstrack(void)
// ----------------
if (cross_track_test() < 4000) { // If we are too far off or too close we don't do track following
float temp = (target_bearing - original_target_bearing) * RADX100;
//radians((target_bearing - original_target_bearing) / 100)
crosstrack_error = sin(temp) * wp_distance; // Meters we are off track line
crosstrack_error = constrain(crosstrack_error * g.crosstrack_gain, -1200, 1200);
crosstrack_error = sin(temp) * (wp_distance * g.crosstrack_gain); // Meters we are off track line
crosstrack_error = constrain(crosstrack_error, -1200, 1200);
}
}
// used to generate the offset angle for testing crosstrack viability
static int32_t cross_track_test()
{
int32_t temp = target_bearing - original_target_bearing;
temp = wrap_180(temp);
int32_t temp;
temp = target_bearing - original_target_bearing;
temp = wrap_180(temp);
return abs(temp);
}
// nav_roll, nav_pitch
// this calculation is different than loiter above because we are in a different Frame of Reference.
// nav_lat is pointed towards the target, where as in Loiter, nav_lat is pointed north!
static void calc_nav_pitch_roll()
{
int32_t angle = wrap_360(dcm.yaw_sensor - target_bearing);
@ -331,7 +333,7 @@ static int32_t wrap_180(int32_t error)
// constrain answer to 30° to avoid overshoot
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
}
return 0;
return 0;
}
*/
/*