mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-02-21 23:33:57 -04:00
AP_InertialSensor: more accurately compute INS noise taking throttle into account and adding frequency noise noisily
make SITL fast-sampling correct
This commit is contained in:
parent
8b0fc1207d
commit
52f59fb573
@ -55,37 +55,60 @@ bool AP_InertialSensor_SITL::init_sensor(void)
|
||||
return true;
|
||||
}
|
||||
|
||||
// calculate a noisy noise component
|
||||
static float calculate_noise(float noise, float noise_variation) {
|
||||
return noise * (1.0f + noise_variation * rand_float());
|
||||
}
|
||||
|
||||
/*
|
||||
generate an accelerometer sample
|
||||
*/
|
||||
void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
|
||||
{
|
||||
// minimum noise levels are 2 bits, but averaged over many
|
||||
// samples, giving around 0.01 m/s/s
|
||||
float accel_noise = 0.01f;
|
||||
Vector3f accel_accum;
|
||||
uint8_t nsamples = enable_fast_sampling(accel_instance[instance]) ? 4 : 1;
|
||||
for (uint8_t j = 0; j < nsamples; j++) {
|
||||
|
||||
if (sitl->motors_on) {
|
||||
// add extra noise when the motors are on
|
||||
accel_noise += instance == 0 ? sitl->accel_noise : sitl->accel2_noise;
|
||||
}
|
||||
// add accel bias and noise
|
||||
Vector3f accel_bias = instance == 0 ? sitl->accel_bias.get() : sitl->accel2_bias.get();
|
||||
float xAccel = sitl->state.xAccel + accel_bias.x;
|
||||
float yAccel = sitl->state.yAccel + accel_bias.y;
|
||||
float zAccel = sitl->state.zAccel + accel_bias.z;
|
||||
|
||||
// minimum noise levels are 2 bits, but averaged over many
|
||||
// samples, giving around 0.01 m/s/s
|
||||
float accel_noise = 0.01f;
|
||||
float noise_variation = 0.05;
|
||||
// this smears the individual motor peaks somewhat emulating physical motors
|
||||
float freq_variation = 0.12;
|
||||
|
||||
// add accel bias and noise
|
||||
Vector3f accel_bias = instance == 0 ? sitl->accel_bias.get() : sitl->accel2_bias.get();
|
||||
float xAccel = sitl->state.xAccel + accel_bias.x;
|
||||
float yAccel = sitl->state.yAccel + accel_bias.y;
|
||||
float zAccel = sitl->state.zAccel + accel_bias.z;
|
||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||
bool vibe_motor = !is_zero(sitl->vibe_motor);
|
||||
if (vibe_freq.is_zero() && !vibe_motor) {
|
||||
xAccel += accel_noise * rand_float();
|
||||
yAccel += accel_noise * rand_float();
|
||||
zAccel += accel_noise * rand_float();
|
||||
} else {
|
||||
if (vibe_motor) {
|
||||
|
||||
bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min;
|
||||
// on a real 180mm copter gyro noise varies between 0.8-4 m/s/s for throttle 0.2-0.8
|
||||
// giving a accel noise variation of 5.33 m/s/s over the full throttle range
|
||||
if (motors_on) {
|
||||
// add extra noise when the motors are on
|
||||
accel_noise = (instance == 0 ? sitl->accel_noise : sitl->accel2_noise) * sitl->throttle;
|
||||
}
|
||||
|
||||
// VIB_FREQ is a static vibration applied to each axis
|
||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||
if (!vibe_freq.is_zero() && motors_on) {
|
||||
float t = AP_HAL::micros() * 1.0e-6f;
|
||||
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * calculate_noise(accel_noise, noise_variation);
|
||||
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * calculate_noise(accel_noise, noise_variation);
|
||||
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * calculate_noise(accel_noise, noise_variation);
|
||||
}
|
||||
|
||||
// VIB_MOT_MAX is a rpm-scaled vibration applied to each axis
|
||||
if (!is_zero(sitl->vibe_motor) && motors_on) {
|
||||
for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
|
||||
float& phase = accel_motor_phase[instance][i];
|
||||
float motor_freq = sitl->state.rpm[i] / 60.0f;
|
||||
float phase_incr = motor_freq * 2 * M_PI / accel_sample_hz[instance];
|
||||
float &phase = accel_motor_phase[instance][i];
|
||||
float motor_freq = calculate_noise(sitl->state.rpm[i] / 60.0f, freq_variation);
|
||||
float phase_incr = motor_freq * 2 * M_PI / (accel_sample_hz[instance] * nsamples);
|
||||
phase += phase_incr;
|
||||
if (phase_incr > M_PI) {
|
||||
phase -= 2 * M_PI;
|
||||
@ -93,53 +116,48 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
|
||||
else if (phase_incr < -M_PI) {
|
||||
phase += 2 * M_PI;
|
||||
}
|
||||
xAccel += sinf(phase) * accel_noise;
|
||||
yAccel += sinf(phase) * accel_noise;
|
||||
zAccel += sinf(phase) * accel_noise;
|
||||
xAccel += sinf(phase) * calculate_noise(accel_noise, noise_variation);
|
||||
yAccel += sinf(phase) * calculate_noise(accel_noise, noise_variation);
|
||||
zAccel += sinf(phase) * calculate_noise(accel_noise, noise_variation);
|
||||
}
|
||||
}
|
||||
if (!vibe_freq.is_zero()) {
|
||||
float t = AP_HAL::micros() * 1.0e-6f;
|
||||
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * accel_noise;
|
||||
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * accel_noise;
|
||||
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * accel_noise;
|
||||
|
||||
// correct for the acceleration due to the IMU position offset and angular acceleration
|
||||
// correct for the centripetal acceleration
|
||||
// only apply corrections to first accelerometer
|
||||
Vector3f pos_offset = sitl->imu_pos_offset;
|
||||
if (!pos_offset.is_zero()) {
|
||||
// calculate sensed acceleration due to lever arm effect
|
||||
// Note: the % operator has been overloaded to provide a cross product
|
||||
Vector3f angular_accel = Vector3f(radians(sitl->state.angAccel.x), radians(sitl->state.angAccel.y), radians(sitl->state.angAccel.z));
|
||||
Vector3f lever_arm_accel = angular_accel % pos_offset;
|
||||
|
||||
// calculate sensed acceleration due to centripetal acceleration
|
||||
Vector3f angular_rate = Vector3f(radians(sitl->state.rollRate), radians(sitl->state.pitchRate), radians(sitl->state.yawRate));
|
||||
Vector3f centripetal_accel = angular_rate % (angular_rate % pos_offset);
|
||||
|
||||
// apply corrections
|
||||
xAccel += lever_arm_accel.x + centripetal_accel.x;
|
||||
yAccel += lever_arm_accel.y + centripetal_accel.y;
|
||||
zAccel += lever_arm_accel.z + centripetal_accel.z;
|
||||
}
|
||||
}
|
||||
|
||||
// correct for the acceleration due to the IMU position offset and angular acceleration
|
||||
// correct for the centripetal acceleration
|
||||
// only apply corrections to first accelerometer
|
||||
Vector3f pos_offset = sitl->imu_pos_offset;
|
||||
if (!pos_offset.is_zero()) {
|
||||
// calculate sensed acceleration due to lever arm effect
|
||||
// Note: the % operator has been overloaded to provide a cross product
|
||||
Vector3f angular_accel = Vector3f(radians(sitl->state.angAccel.x) , radians(sitl->state.angAccel.y) , radians(sitl->state.angAccel.z));
|
||||
Vector3f lever_arm_accel = angular_accel % pos_offset;
|
||||
|
||||
// calculate sensed acceleration due to centripetal acceleration
|
||||
Vector3f angular_rate = Vector3f(radians(sitl->state.rollRate), radians(sitl->state.pitchRate), radians(sitl->state.yawRate));
|
||||
Vector3f centripetal_accel = angular_rate % (angular_rate % pos_offset);
|
||||
if (fabsf(sitl->accel_fail) > 1.0e-6f) {
|
||||
xAccel = sitl->accel_fail;
|
||||
yAccel = sitl->accel_fail;
|
||||
zAccel = sitl->accel_fail;
|
||||
}
|
||||
|
||||
// apply corrections
|
||||
xAccel += lever_arm_accel.x + centripetal_accel.x;
|
||||
yAccel += lever_arm_accel.y + centripetal_accel.y;
|
||||
zAccel += lever_arm_accel.z + centripetal_accel.z;
|
||||
Vector3f accel = Vector3f(xAccel, yAccel, zAccel);
|
||||
|
||||
_rotate_and_correct_accel(accel_instance[instance], accel);
|
||||
_notify_new_accel_sensor_rate_sample(instance, accel);
|
||||
|
||||
accel_accum += accel;
|
||||
}
|
||||
|
||||
if (fabsf(sitl->accel_fail) > 1.0e-6f) {
|
||||
xAccel = sitl->accel_fail;
|
||||
yAccel = sitl->accel_fail;
|
||||
zAccel = sitl->accel_fail;
|
||||
}
|
||||
|
||||
Vector3f accel = Vector3f(xAccel, yAccel, zAccel);
|
||||
|
||||
_rotate_and_correct_accel(accel_instance[instance], accel);
|
||||
|
||||
uint8_t nsamples = enable_fast_sampling(accel_instance[instance]) ? 4 : 1;
|
||||
for (uint8_t i=0; i<nsamples; i++) {
|
||||
_notify_new_accel_raw_sample(accel_instance[instance], accel);
|
||||
}
|
||||
accel_accum /= nsamples;
|
||||
_notify_new_accel_raw_sample(accel_instance[instance], accel_accum);
|
||||
|
||||
_publish_temperature(instance, 23);
|
||||
}
|
||||
@ -149,30 +167,46 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
|
||||
*/
|
||||
void AP_InertialSensor_SITL::generate_gyro(uint8_t instance)
|
||||
{
|
||||
// minimum gyro noise is less than 1 bit
|
||||
float gyro_noise = ToRad(0.04f);
|
||||
|
||||
if (sitl->motors_on) {
|
||||
// add extra noise when the motors are on
|
||||
gyro_noise += ToRad(sitl->gyro_noise);
|
||||
}
|
||||
Vector3f gyro_accum;
|
||||
uint8_t nsamples = enable_fast_sampling(gyro_instance[instance]) ? 8 : 1;
|
||||
for (uint8_t j = 0; j < nsamples; j++) {
|
||||
float p = radians(sitl->state.rollRate) + gyro_drift();
|
||||
float q = radians(sitl->state.pitchRate) + gyro_drift();
|
||||
float r = radians(sitl->state.yawRate) + gyro_drift();
|
||||
|
||||
float p = radians(sitl->state.rollRate) + gyro_drift();
|
||||
float q = radians(sitl->state.pitchRate) + gyro_drift();
|
||||
float r = radians(sitl->state.yawRate) + gyro_drift();
|
||||
// minimum gyro noise is less than 1 bit
|
||||
float gyro_noise = ToRad(0.04f);
|
||||
float noise_variation = 0.05f;
|
||||
// this smears the individual motor peaks somewhat emulating physical motors
|
||||
float freq_variation = 0.12f;
|
||||
|
||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||
bool vibe_motor = !is_zero(sitl->vibe_motor);
|
||||
if (vibe_freq.is_zero() && !vibe_motor) {
|
||||
p += gyro_noise * rand_float();
|
||||
q += gyro_noise * rand_float();
|
||||
r += gyro_noise * rand_float();
|
||||
} else {
|
||||
if (vibe_motor) {
|
||||
|
||||
bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min;
|
||||
// on a real 180mm copter gyro noise varies between 0.2-0.4 rad/s for throttle 0.2-0.8
|
||||
// giving a gyro noise variation of 0.33 rad/s or 20deg/s over the full throttle range
|
||||
if (motors_on) {
|
||||
// add extra noise when the motors are on
|
||||
gyro_noise = ToRad(sitl->gyro_noise) * sitl->throttle;
|
||||
}
|
||||
|
||||
// VIB_FREQ is a static vibration applied to each axis
|
||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||
if (!vibe_freq.is_zero() && motors_on) {
|
||||
float t = AP_HAL::micros() * 1.0e-6f;
|
||||
p += sinf(t * 2 * M_PI * vibe_freq.x) * calculate_noise(gyro_noise, noise_variation);
|
||||
q += sinf(t * 2 * M_PI * vibe_freq.y) * calculate_noise(gyro_noise, noise_variation);
|
||||
r += sinf(t * 2 * M_PI * vibe_freq.z) * calculate_noise(gyro_noise, noise_variation);
|
||||
}
|
||||
|
||||
// VIB_MOT_MAX is a rpm-scaled vibration applied to each axis
|
||||
if (!is_zero(sitl->vibe_motor) && motors_on) {
|
||||
for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
|
||||
float motor_freq = sitl->state.rpm[i] / 60.0f;
|
||||
float phase_incr = motor_freq * 2 * M_PI / gyro_sample_hz[instance];
|
||||
float& phase = gyro_motor_phase[instance][i];
|
||||
float motor_freq = calculate_noise(sitl->state.rpm[i] / 60.0f, freq_variation);
|
||||
float phase_incr = motor_freq * 2 * M_PI / (gyro_sample_hz[instance] * nsamples);
|
||||
float &phase = gyro_motor_phase[instance][i];
|
||||
phase += phase_incr;
|
||||
if (phase_incr > M_PI) {
|
||||
phase -= 2 * M_PI;
|
||||
@ -180,34 +214,26 @@ void AP_InertialSensor_SITL::generate_gyro(uint8_t instance)
|
||||
else if (phase_incr < -M_PI) {
|
||||
phase += 2 * M_PI;
|
||||
}
|
||||
|
||||
p += sinf(phase) * gyro_noise;
|
||||
q += sinf(phase) * gyro_noise;
|
||||
r += sinf(phase) * gyro_noise;
|
||||
p += sinf(phase) * calculate_noise(gyro_noise, noise_variation);
|
||||
q += sinf(phase) * calculate_noise(gyro_noise, noise_variation);
|
||||
r += sinf(phase) * calculate_noise(gyro_noise, noise_variation);
|
||||
}
|
||||
}
|
||||
if (!vibe_freq.is_zero()) {
|
||||
float t = AP_HAL::micros() * 1.0e-6f;
|
||||
p += sinf(t * 2 * M_PI * vibe_freq.x) * gyro_noise;
|
||||
q += sinf(t * 2 * M_PI * vibe_freq.y) * gyro_noise;
|
||||
r += sinf(t * 2 * M_PI * vibe_freq.z) * gyro_noise;
|
||||
}
|
||||
}
|
||||
|
||||
Vector3f gyro = Vector3f(p, q, r);
|
||||
|
||||
// add in gyro scaling
|
||||
Vector3f scale = sitl->gyro_scale;
|
||||
gyro.x *= (1 + scale.x * 0.01f);
|
||||
gyro.y *= (1 + scale.y * 0.01f);
|
||||
gyro.z *= (1 + scale.z * 0.01f);
|
||||
|
||||
_rotate_and_correct_gyro(gyro_instance[instance], gyro);
|
||||
|
||||
uint8_t nsamples = enable_fast_sampling(gyro_instance[instance]) ? 8 : 1;
|
||||
for (uint8_t i = 0; i < nsamples; i++) {
|
||||
_notify_new_gyro_raw_sample(gyro_instance[instance], gyro);
|
||||
|
||||
Vector3f gyro = Vector3f(p, q, r);
|
||||
|
||||
// add in gyro scaling
|
||||
Vector3f scale = sitl->gyro_scale;
|
||||
gyro.x *= (1 + scale.x * 0.01f);
|
||||
gyro.y *= (1 + scale.y * 0.01f);
|
||||
gyro.z *= (1 + scale.z * 0.01f);
|
||||
|
||||
_rotate_and_correct_gyro(gyro_instance[instance], gyro);
|
||||
gyro_accum += gyro;
|
||||
_notify_new_gyro_sensor_rate_sample(instance, gyro);
|
||||
}
|
||||
gyro_accum /= nsamples;
|
||||
_notify_new_gyro_raw_sample(gyro_instance[instance], gyro_accum);
|
||||
}
|
||||
|
||||
void AP_InertialSensor_SITL::timer_update(void)
|
||||
|
Loading…
Reference in New Issue
Block a user