Plane: move acro stabilization into mode acro

This commit is contained in:
Iampete1 2023-02-12 13:45:25 +00:00 committed by Andrew Tridgell
parent 6bb0096b9d
commit 50eaa1cc54
5 changed files with 87 additions and 75 deletions

View File

@ -369,30 +369,37 @@ void ModeTraining::run()
}
void ModeAcro::run()
{
if (plane.g.acro_locking == 2 && plane.g.acro_yaw_rate > 0 &&
plane.yawController.rate_control_enabled()) {
// we can do 3D acro locking
stabilize_quaternion();
return;
}
// Normal acro
stabilize();
}
/*
this is the ACRO mode stabilization function. It does rate
stabilization on roll and pitch axes
*/
void Plane::stabilize_acro()
void ModeAcro::stabilize()
{
if (g.acro_locking == 2 && g.acro_yaw_rate > 0 &&
yawController.rate_control_enabled()) {
// we can do 3D acro locking
stabilize_acro_quaternion();
return;
}
const float speed_scaler = get_speed_scaler();
const float rexpo = roll_in_expo(true);
const float pexpo = pitch_in_expo(true);
float roll_rate = (rexpo/SERVO_MAX) * g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * g.acro_pitch_rate;
const float speed_scaler = plane.get_speed_scaler();
const float rexpo = plane.roll_in_expo(true);
const float pexpo = plane.pitch_in_expo(true);
float roll_rate = (rexpo/SERVO_MAX) * plane.g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * plane.g.acro_pitch_rate;
IGNORE_RETURN(plane.ahrs.get_quaternion(plane.acro_state.q));
IGNORE_RETURN(ahrs.get_quaternion(acro_state.q));
/*
check for special roll handling near the pitch poles
*/
if (g.acro_locking && is_zero(roll_rate)) {
if (plane.g.acro_locking && is_zero(roll_rate)) {
/*
we have no roll stick input, so we will enter "roll locked"
mode, and hold the roll we had when the stick was released
@ -401,13 +408,13 @@ void Plane::stabilize_acro()
acro_state.locked_roll = true;
acro_state.locked_roll_err = 0;
} else {
acro_state.locked_roll_err += ahrs.get_gyro().x * G_Dt;
acro_state.locked_roll_err += ahrs.get_gyro().x * plane.G_Dt;
}
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100;
nav_roll_cd = ahrs.roll_sensor + roll_error_cd;
plane.nav_roll_cd = ahrs.roll_sensor + roll_error_cd;
// try to reduce the integrated angular error to zero. We set
// 'stabilze' to true, which disables the roll integrator
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_servo_out(roll_error_cd,
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_servo_out(roll_error_cd,
speed_scaler,
true, false));
} else {
@ -416,10 +423,10 @@ void Plane::stabilize_acro()
user releases the stick
*/
acro_state.locked_roll = false;
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_rate_out(roll_rate, speed_scaler));
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(roll_rate, speed_scaler));
}
if (g.acro_locking && is_zero(pitch_rate)) {
if (plane.g.acro_locking && is_zero(pitch_rate)) {
/*
user has zero pitch stick input, so we lock pitch at the
point they release the stick
@ -430,8 +437,8 @@ void Plane::stabilize_acro()
}
// try to hold the locked pitch. Note that we have the pitch
// integrator enabled, which helps with inverted flight
nav_pitch_cd = acro_state.locked_pitch_cd;
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor,
plane.nav_pitch_cd = acro_state.locked_pitch_cd;
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.pitchController.get_servo_out(plane.nav_pitch_cd - ahrs.pitch_sensor,
speed_scaler,
false, false));
} else {
@ -439,63 +446,63 @@ void Plane::stabilize_acro()
user has non-zero pitch input, use a pure rate controller
*/
acro_state.locked_pitch = false;
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_rate_out(pitch_rate, speed_scaler));
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.pitchController.get_rate_out(pitch_rate, speed_scaler));
}
steering_control.steering = rudder_input();
plane.steering_control.steering = plane.rudder_input();
if (g.acro_yaw_rate > 0 && yawController.rate_control_enabled()) {
if (plane.g.acro_yaw_rate > 0 && plane.yawController.rate_control_enabled()) {
// user has asked for yaw rate control with yaw rate scaled by ACRO_YAW_RATE
const float rudd_expo = rudder_in_expo(true);
const float yaw_rate = (rudd_expo/SERVO_MAX) * g.acro_yaw_rate;
steering_control.steering = steering_control.rudder = yawController.get_rate_out(yaw_rate, speed_scaler, false);
const float rudd_expo = plane.rudder_in_expo(true);
const float yaw_rate = (rudd_expo/SERVO_MAX) * plane.g.acro_yaw_rate;
plane.steering_control.steering = plane.steering_control.rudder = plane.yawController.get_rate_out(yaw_rate, speed_scaler, false);
} else if (plane.g2.flight_options & FlightOptions::ACRO_YAW_DAMPER) {
// use yaw controller
calc_nav_yaw_coordinated();
plane.calc_nav_yaw_coordinated();
} else {
/*
manual rudder
*/
steering_control.rudder = steering_control.steering;
plane.steering_control.rudder = plane.steering_control.steering;
}
}
/*
quaternion based acro stabilization with continuous locking. Enabled with ACRO_LOCKING=2
*/
void Plane::stabilize_acro_quaternion()
void ModeAcro::stabilize_quaternion()
{
const float speed_scaler = get_speed_scaler();
const float speed_scaler = plane.get_speed_scaler();
auto &q = acro_state.q;
const float rexpo = roll_in_expo(true);
const float pexpo = pitch_in_expo(true);
const float yexpo = rudder_in_expo(true);
const float rexpo = plane.roll_in_expo(true);
const float pexpo = plane.pitch_in_expo(true);
const float yexpo = plane.rudder_in_expo(true);
// get pilot desired rates
float roll_rate = (rexpo/SERVO_MAX) * g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * g.acro_pitch_rate;
float yaw_rate = (yexpo/SERVO_MAX) * g.acro_yaw_rate;
float roll_rate = (rexpo/SERVO_MAX) * plane.g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * plane.g.acro_pitch_rate;
float yaw_rate = (yexpo/SERVO_MAX) * plane.g.acro_yaw_rate;
bool roll_active = !is_zero(roll_rate);
bool pitch_active = !is_zero(pitch_rate);
bool yaw_active = !is_zero(yaw_rate);
// integrate target attitude
Vector3f r{ float(radians(roll_rate)), float(radians(pitch_rate)), float(radians(yaw_rate)) };
r *= G_Dt;
r *= plane.G_Dt;
q.rotate_fast(r);
q.normalize();
// fill in target roll/pitch for GCS/logs
nav_roll_cd = degrees(q.get_euler_roll())*100;
nav_pitch_cd = degrees(q.get_euler_pitch())*100;
plane.nav_roll_cd = degrees(q.get_euler_roll())*100;
plane.nav_pitch_cd = degrees(q.get_euler_pitch())*100;
// get AHRS attitude
Quaternion ahrs_q;
IGNORE_RETURN(ahrs.get_quaternion(ahrs_q));
// zero target if not flying, no stick input and zero throttle
if (is_zero(get_throttle_input()) &&
!is_flying() &&
if (is_zero(plane.get_throttle_input()) &&
!plane.is_flying() &&
is_zero(roll_rate) &&
is_zero(pitch_rate) &&
is_zero(yaw_rate)) {
@ -510,9 +517,9 @@ void Plane::stabilize_acro_quaternion()
// don't let too much error build up, limit to 0.2s
const float max_error_t = 0.2;
float max_err_roll_rad = radians(g.acro_roll_rate*max_error_t);
float max_err_pitch_rad = radians(g.acro_pitch_rate*max_error_t);
float max_err_yaw_rad = radians(g.acro_yaw_rate*max_error_t);
float max_err_roll_rad = radians(plane.g.acro_roll_rate*max_error_t);
float max_err_pitch_rad = radians(plane.g.acro_pitch_rate*max_error_t);
float max_err_yaw_rad = radians(plane.g.acro_yaw_rate*max_error_t);
if (!roll_active && acro_state.roll_active_last) {
max_err_roll_rad = 0;
@ -534,9 +541,9 @@ void Plane::stabilize_acro_quaternion()
q.normalize();
// convert to desired body rates
desired_rates.x /= rollController.tau();
desired_rates.y /= pitchController.tau();
desired_rates.z /= pitchController.tau(); // no yaw tau parameter, use pitch
desired_rates.x /= plane.rollController.tau();
desired_rates.y /= plane.pitchController.tau();
desired_rates.z /= plane.pitchController.tau(); // no yaw tau parameter, use pitch
desired_rates *= degrees(1.0);
@ -551,9 +558,9 @@ void Plane::stabilize_acro_quaternion()
}
// call to rate controllers
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_rate_out(desired_rates.x, speed_scaler));
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_rate_out(desired_rates.y, speed_scaler));
steering_control.steering = steering_control.rudder = yawController.get_rate_out(desired_rates.z, speed_scaler, false);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(desired_rates.x, speed_scaler));
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.pitchController.get_rate_out(desired_rates.y, speed_scaler));
plane.steering_control.steering = plane.steering_control.rudder = plane.yawController.get_rate_out(desired_rates.z, speed_scaler, false);
acro_state.roll_active_last = roll_active;
acro_state.pitch_active_last = pitch_active;
@ -614,7 +621,7 @@ void Plane::stabilize()
}
#endif
} else if (control_mode == &mode_acro) {
stabilize_acro();
plane.control_mode->run();
} else if (control_mode == &mode_stabilize) {
stabilize_roll();
stabilize_pitch();
@ -629,7 +636,7 @@ void Plane::stabilize()
// we also stabilize using fixed wing surfaces
if (plane.control_mode->mode_number() == Mode::Number::QACRO) {
stabilize_acro();
plane.mode_acro.run();
} else {
stabilize_roll();
stabilize_pitch();

View File

@ -392,18 +392,6 @@ private:
FUNCTOR_BIND_MEMBER(&Plane::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
// ACRO controller state
struct {
bool locked_roll;
bool locked_pitch;
float locked_roll_err;
int32_t locked_pitch_cd;
Quaternion q;
bool roll_active_last;
bool pitch_active_last;
bool yaw_active_last;
} acro_state;
struct {
uint32_t last_tkoff_arm_time;
uint32_t last_check_ms;
@ -868,8 +856,6 @@ private:
void stabilize_stick_mixing_direct();
void stabilize_stick_mixing_fbw();
void stabilize_yaw();
void stabilize_acro();
void stabilize_acro_quaternion();
void calc_nav_yaw_coordinated();
void calc_nav_yaw_course(void);
void calc_nav_yaw_ground(void);

View File

@ -150,6 +150,7 @@ protected:
class ModeAcro : public Mode
{
friend class ModeQAcro;
public:
Mode::Number mode_number() const override { return Mode::Number::ACRO; }
@ -159,8 +160,26 @@ public:
// methods that affect movement of the vehicle in this mode
void update() override;
void run() override;
void stabilize();
void stabilize_quaternion();
protected:
// ACRO controller state
struct {
bool locked_roll;
bool locked_pitch;
float locked_roll_err;
int32_t locked_pitch_cd;
Quaternion q;
bool roll_active_last;
bool pitch_active_last;
bool yaw_active_last;
} acro_state;
bool _enter() override;
};

View File

@ -3,22 +3,22 @@
bool ModeAcro::_enter()
{
plane.acro_state.locked_roll = false;
plane.acro_state.locked_pitch = false;
IGNORE_RETURN(ahrs.get_quaternion(plane.acro_state.q));
acro_state.locked_roll = false;
acro_state.locked_pitch = false;
IGNORE_RETURN(ahrs.get_quaternion(acro_state.q));
return true;
}
void ModeAcro::update()
{
// handle locked/unlocked control
if (plane.acro_state.locked_roll) {
plane.nav_roll_cd = plane.acro_state.locked_roll_err;
if (acro_state.locked_roll) {
plane.nav_roll_cd = acro_state.locked_roll_err;
} else {
plane.nav_roll_cd = ahrs.roll_sensor;
}
if (plane.acro_state.locked_pitch) {
plane.nav_pitch_cd = plane.acro_state.locked_pitch_cd;
if (acro_state.locked_pitch) {
plane.nav_pitch_cd = acro_state.locked_pitch_cd;
} else {
plane.nav_pitch_cd = ahrs.pitch_sensor;
}

View File

@ -12,7 +12,7 @@ bool ModeQAcro::_enter()
// disable yaw rate time contant to mantain old behaviour
quadplane.disable_yaw_rate_time_constant();
IGNORE_RETURN(ahrs.get_quaternion(plane.acro_state.q));
IGNORE_RETURN(ahrs.get_quaternion(plane.mode_acro.acro_state.q));
return true;
}