DCM: removed update_DCM_fast

this combines the functionality of the 'fast' DCM with the normal one,
and also speeds up both the yaw drift correction and the matrix update
code
This commit is contained in:
Andrew Tridgell 2012-03-07 15:09:17 +11:00
parent 2c279639a3
commit 4c6afa36cb
2 changed files with 204 additions and 263 deletions

View File

@ -1,8 +1,5 @@
#define RADX100 0.000174532925
#define DEGX100 5729.57795
/*
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
APM_DCM.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
This library works with the ArduPilot Mega and "Oilpan"
@ -21,17 +18,6 @@
*/
#include <AP_DCM.h>
#define OUTPUTMODE 1 // This is just used for debugging, remove later
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
//#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
//#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Ki_ROLLPITCH 0.0 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
//#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
// this is the speed in cm/s above which we first get a yaw lock with
// the GPS
#define GPS_SPEED_MIN 300
@ -46,154 +32,117 @@ AP_DCM::set_compass(Compass *compass)
_compass = compass;
}
/**************************************************/
// run a full DCM update round
// the drift_correction_frequency is how many steps of the algorithm
// to run before doing an accelerometer drift correction step
void
AP_DCM::update_DCM_fast(void)
AP_DCM::update_DCM(uint8_t drift_correction_frequency)
{
float delta_t;
Vector3f accel;
// tell the IMU to grab some data
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// add the current accel vector into our averaging filter
// ask the IMU how much time this sensor reading represents
delta_t = _imu->get_delta_time();
// Get current values for gyros
_gyro_vector = _imu->get_gyro();
// accumulate some more accelerometer data
accel = _imu->get_accel();
_accel_sum += accel;
_accel_sum_count++;
_drift_correction_time += delta_t;
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
switch(_toggle++){
case 0:
normalize(); // Normalize the DCM matrix
break;
case 1:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 2:
_accel_vector = _accel_sum / _accel_sum_count;
_accel_sum_count = 0;
_accel_sum.zero();
drift_correction(); // Normalize the DCM matrix
break;
case 3:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 4:
euler_yaw();
break;
default:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
_toggle = 0;
break;
// Integrate the DCM matrix using gyro inputs
matrix_update(delta_t);
if (_dcm_matrix.is_nan()) {
SITL_debug("NaN matrix\n");
}
// add up the omega vector so we pass a value to the drift
// correction averaged over the same time period as the
// accelerometers
_omega_sum += _omega_integ_corr;
// Normalize the DCM matrix
normalize();
// see if we will perform drift correction on this call
_drift_correction_count++;
if (_drift_correction_count == drift_correction_frequency) {
// calculate the average accelerometer vector over
// this time
float scale = 1.0 / _drift_correction_count;
_accel_vector = _accel_sum * scale;
_accel_sum.zero();
// calculate the average omega value over this time
_omega_smoothed = _omega_sum * scale;
_omega_sum.zero();
// Perform drift correction
drift_correction(_drift_correction_time);
_drift_correction_time = 0;
_drift_correction_count = 0;
}
// paranoid check for bad values in the DCM matrix
check_matrix();
// Calculate pitch, roll, yaw for stabilization and navigation
euler_angles();
}
/**************************************************/
void
AP_DCM::update_DCM(void)
{
float delta_t;
Vector3f accel;
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// update_DCM() doesn't do averaging over the accel vectors,
// just a mild lowpass filter
accel = _imu->get_accel();
_accel_vector = (accel * 0.5) + (_accel_vector * 0.5);
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
normalize(); // Normalize the DCM matrix
drift_correction(); // Perform drift correction
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
}
/**************************************************/
//For Debugging
/*
void
printm(const char *l, Matrix3f &m)
{ Serial.println(" "); Serial.println(l);
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
}
*/
/**************************************************/
// update the DCM matrix using only the gyros
void
AP_DCM::matrix_update(float _G_Dt)
{
Matrix3f update_matrix;
Matrix3f temp_matrix;
// Used for _centripetal correction (theoretically better than _omega)
_omega_integ_corr = _gyro_vector + _omega_I;
// Equation 16, adding proportional and integral correction terms
_omega = _omega_integ_corr + _omega_P;
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
_omega_smoothed = (_omega_smoothed * 0.5) + (_omega_integ_corr * 0.5);
float tmpx = _G_Dt * _omega.x;
float tmpy = _G_Dt * _omega.y;
float tmpz = _G_Dt * _omega.z;
#if OUTPUTMODE == 1
float tmp = _G_Dt * _omega.x;
update_matrix.b.z = -tmp; // -delta Theta x
update_matrix.c.y = tmp; // delta Theta x
tmp = _G_Dt * _omega.y;
update_matrix.c.x = -tmp; // -delta Theta y
update_matrix.a.z = tmp; // delta Theta y
tmp = _G_Dt * _omega.z;
update_matrix.b.x = tmp; // delta Theta z
update_matrix.a.y = -tmp; // -delta Theta z
update_matrix.a.x = 0;
update_matrix.b.y = 0;
update_matrix.c.z = 0;
#else // Uncorrected data (no drift correction)
update_matrix.a.x = 0;
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
update_matrix.a.z = _G_Dt * _gyro_vector.y;
update_matrix.b.x = _G_Dt * _gyro_vector.z;
update_matrix.b.y = 0;
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
update_matrix.c.y = _G_Dt * _gyro_vector.x;
update_matrix.c.z = 0;
#endif
temp_matrix = _dcm_matrix * update_matrix;
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
// this is an expansion of the DCM matrix multiply, with known
// zero elements removed
_dcm_matrix.a.x += _dcm_matrix.a.y * tmpz - _dcm_matrix.a.z * tmpy;
_dcm_matrix.a.y += _dcm_matrix.a.z * tmpx - _dcm_matrix.a.x * tmpz;
_dcm_matrix.a.z += _dcm_matrix.a.x * tmpy - _dcm_matrix.a.y * tmpx;
_dcm_matrix.b.x += _dcm_matrix.b.y * tmpz - _dcm_matrix.b.z * tmpy;
_dcm_matrix.b.y += _dcm_matrix.b.z * tmpx - _dcm_matrix.b.x * tmpz;
_dcm_matrix.b.z += _dcm_matrix.b.x * tmpy - _dcm_matrix.b.y * tmpx;
_dcm_matrix.c.x += _dcm_matrix.c.y * tmpz - _dcm_matrix.c.z * tmpy;
_dcm_matrix.c.y += _dcm_matrix.c.z * tmpx - _dcm_matrix.c.x * tmpz;
_dcm_matrix.c.z += _dcm_matrix.c.x * tmpy - _dcm_matrix.c.y * tmpx;
}
// adjust an accelerometer vector for centripetal force
// adjust an accelerometer vector for known acceleration forces
void
AP_DCM::accel_adjust(Vector3f &accel)
{
float veloc;
// compensate for linear acceleration, limited to 1g
float acceleration = _gps->acceleration();
acceleration = constrain(acceleration, 0, 9.8);
accel.x -= acceleration;
veloc = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
// compensate for centripetal acceleration
veloc = _gps->ground_speed / 100;
// We are working with a modified version of equation 26 as
// our IMU object reports acceleration in the positive axis
// direction as positive
// Equation 26 broken up into separate pieces
accel.y -= _omega_smoothed.z * veloc;
accel.z += _omega_smoothed.y * veloc;
}
@ -272,45 +221,9 @@ AP_DCM::check_matrix(void)
}
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
*/
void
AP_DCM::normalize(void)
{
float error = 0;
Vector3f temporary[3];
int problem = 0;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
temporary[0] = _dcm_matrix.b;
temporary[1] = _dcm_matrix.a;
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
_dcm_matrix.a = renorm(temporary[0], problem);
_dcm_matrix.b = renorm(temporary[1], problem);
_dcm_matrix.c = renorm(temporary[2], problem);
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
matrix_reset(true);
}
}
/**************************************************/
Vector3f
AP_DCM::renorm(Vector3f const &a, int &problem)
bool
AP_DCM::renorm(Vector3f const &a, Vector3f &result)
{
float renorm_val;
@ -332,7 +245,7 @@ AP_DCM::renorm(Vector3f const &a, int &problem)
// we don't want to compound the error by making DCM less
// accurate.
renorm_val = 1.0 / sqrt(a * a);
renorm_val = 1.0 / a.length();
// keep the average for reporting
_renorm_val_sum += renorm_val;
@ -346,29 +259,61 @@ AP_DCM::renorm(Vector3f const &a, int &problem)
// range, we will reset the matrix and hope we
// can recover our attitude using drift
// correction before we hit the ground!
problem = 1;
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
// renorm_val);
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n",
renorm_val);
renorm_blowup_count++;
return false;
}
}
return (a * renorm_val);
result = a * renorm_val;
return true;
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
*/
void
AP_DCM::normalize(void)
{
float error;
Vector3f t0, t1, t2;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
t0 = _dcm_matrix.a - (_dcm_matrix.b * (0.5f * error)); // eq.19
t1 = _dcm_matrix.b - (_dcm_matrix.a * (0.5f * error)); // eq.19
t2 = t0 % t1; // c= a x b // eq.20
if (!renorm(t0, _dcm_matrix.a) ||
!renorm(t1, _dcm_matrix.b) ||
!renorm(t2, _dcm_matrix.c)) {
// Our solution is blowing up and we will force back
// to last euler angles
matrix_reset(true);
}
}
/**************************************************/
void
AP_DCM::drift_correction(void)
AP_DCM::drift_correction(float deltat)
{
float error_course = 0;
float accel_weight;
float integrator_magnitude;
Vector3f accel;
Vector3f error;
float error_norm = 0;
const float gravity_squared = (9.80665*9.80665);
float yaw_deltat = 0;
accel = _accel_vector;
@ -386,13 +331,12 @@ AP_DCM::drift_correction(void)
// calculate the z component of the accel vector assuming it
// has a length of 9.8. This discards the z accelerometer
// sensor reading completely. Logs show that the z accel is
// the noisest, and it seems that using just the x and y accel
// values gives a better attitude estimate than including the
// z accel
// the noisest, plus it has a disproportionate impact on the
// drift correction result because of the geometry when we are
// mostly flat
float zsquared = gravity_squared - ((accel.x * accel.x) + (accel.y * accel.y));
if (zsquared < 0) {
accel_weight = 0;
_omega_P.zero();
} else {
if (accel.z > 0) {
accel.z = sqrt(zsquared);
@ -400,40 +344,48 @@ AP_DCM::drift_correction(void)
accel.z = -sqrt(zsquared);
}
// this is arbitrary, and can be removed once we get
// ki and kp right
accel_weight = 0.6;
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
error = _dcm_matrix.c % accel;
// error_roll_pitch are in Accel m/s^2 units
// Limit max error_roll_pitch to limit max omega_P and omega_I
// error is in m/s^2 units
// Limit max error to limit max omega_P and omega_I
error_norm = error.length();
if (error_norm > 2) {
error *= (2 / error_norm);
}
_omega_P = error * (_kp_roll_pitch * accel_weight);
_omega_I += error * (_ki_roll_pitch * accel_weight);
// scale the error for the time over which we are
// applying it
error *= deltat;
// calculate the new proportional offset
_omega_P = error * _kp_roll_pitch;
// we limit the change in the integrator to the
// maximum gyro drift rate on each axis
float drift_limit = ToRad(_gyro_drift_rate) * deltat / _ki_roll_pitch;
error.x = constrain(error.x, -drift_limit, drift_limit);
error.y = constrain(error.y, -drift_limit, drift_limit);
error.z = constrain(error.z, -drift_limit, drift_limit);
// update gyro drift estimate
_omega_I += error * _ki_roll_pitch;
}
// these sums support the reporting of the DCM state via MAVLink
_accel_weight_sum += accel_weight;
_accel_weight_count++;
_error_rp_sum += error_norm;
_error_rp_count++;
// yaw drift correction
//*****YAW***************
if (_compass && _compass->use_for_yaw()) {
if (_compass && _compass->use_for_yaw() &&
_compass->last_update != _compass_last_update) {
if (_have_initial_yaw) {
// Equation 23, Calculating YAW error
// We make the gyro YAW drift correction based
// on compass magnetic heading
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x);
yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update);
_compass_last_update = _compass->last_update;
} else {
// this is our first estimate of the yaw,
// construct a DCM matrix based on the current
@ -448,9 +400,10 @@ AP_DCM::drift_correction(void)
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading);
_compass->null_offsets_enable();
_have_initial_yaw = true;
_compass_last_update = _compass->last_update;
}
} else if (_gps && _gps->status() == GPS::GPS_OK) {
} else if (_gps && _gps->status() == GPS::GPS_OK &&
_gps->last_fix_time != _gps_last_update) {
// Use GPS Ground course to correct yaw gyro drift
if (_gps->ground_speed >= GPS_SPEED_MIN) {
if (_have_initial_yaw) {
@ -458,6 +411,8 @@ AP_DCM::drift_correction(void)
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
// Equation 23, Calculating YAW error
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x);
yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update);
_gps_last_update = _gps->last_fix_time;
} else {
// when we first start moving, set the
// DCM matrix to the current
@ -472,6 +427,7 @@ AP_DCM::drift_correction(void)
}
_have_initial_yaw = true;
error_course = 0;
_gps_last_update = _gps->last_fix_time;
}
} else if (_gps->ground_speed >= GPS_SPEED_RESET) {
// we are not going fast enough to use GPS for
@ -489,20 +445,30 @@ AP_DCM::drift_correction(void)
}
}
error = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
_omega_P += error * _kp_yaw; // Adding yaw correction to proportional correction vector.
_omega_I += error * _ki_yaw; // adding yaw correction to integrator correction vector.
// Here we will place a limit on the integrator so that the integrator cannot ever exceed ~30 degrees/second
integrator_magnitude = _omega_I.length();
if (integrator_magnitude > radians(30)) {
_omega_I *= (radians(30) / integrator_magnitude);
if (yaw_deltat == 0 || error_course == 0) {
// nothing to do
return;
}
// Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft
error = _dcm_matrix.c * error_course;
// Adding yaw correction to proportional correction vector.
_omega_P += error * _kp_yaw;
// limit maximum gyro drift
float drift_limit = ToRad(_gyro_drift_rate) * yaw_deltat / _ki_yaw;
error.z = constrain(error.z, -drift_limit, drift_limit);
// add yaw correction to integrator correction vector, but
// only for the z gyro. We rely on the accelerometers for x
// and y gyro drift correction. Using the compass for x/y drift
// correction is too inaccurate, and can lead to incorrect builups in
// the x/y drift
_omega_I.z += error.z * _ki_yaw;
_error_yaw_sum += error_course;
_error_yaw_count++;
//Serial.print("*");
}
@ -511,8 +477,6 @@ AP_DCM::drift_correction(void)
void
AP_DCM::euler_angles(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
@ -523,39 +487,12 @@ AP_DCM::euler_angles(void)
yaw_sensor += 36000;
}
void
AP_DCM::euler_rp(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, NULL);
roll_sensor = roll * DEGX100; //degrees(roll) * 100;
pitch_sensor = pitch * DEGX100; //degrees(pitch) * 100;
}
void
AP_DCM::euler_yaw(void)
{
calculate_euler_angles(_dcm_matrix, NULL, NULL, &yaw);
yaw_sensor = yaw * DEGX100; //degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/* reporting of DCM state for MAVLink */
// average accel_weight since last call
float AP_DCM::get_accel_weight(void)
{
float ret;
if (_accel_weight_count == 0) {
return 0;
}
ret = _accel_weight_sum / _accel_weight_count;
_accel_weight_sum = 0;
_accel_weight_count = 0;
return ret;
return 1.0;
}
// average renorm_val since last call

View File

@ -24,27 +24,29 @@ class AP_DCM
{
public:
// Constructors
AP_DCM(IMU *imu, GPS *&gps, Compass *withCompass = NULL) :
_clamp(3),
_kp_roll_pitch(0.05967),
_ki_roll_pitch(0.00001278),
_kp_yaw(0.8), // .8
_ki_yaw(0.00004), // 0.00004
_compass(withCompass),
AP_DCM(IMU *imu, GPS *&gps) :
_kp_roll_pitch(12.0),
_ki_roll_pitch(0.0006),
_kp_yaw(3.0),
_ki_yaw(0.003),
_gps(gps),
_imu(imu),
_dcm_matrix(1, 0, 0,
0, 1, 0,
0, 0, 1),
0, 1, 0,
0, 0, 1),
_health(1.),
_toggle(0)
{}
// Accessors
Vector3f get_gyro(void) {return _omega_integ_corr; } // We return the raw gyro vector corrected for bias
// return the smoothed gyro vector corrected for drift
Vector3f get_gyro(void) {return _omega_smoothed; }
Matrix3f get_dcm_matrix(void) {return _dcm_matrix; }
Matrix3f get_dcm_transposed(void) {Matrix3f temp = _dcm_matrix; return temp.transpose();}
Vector3f get_integrator(void) {return _omega_I; } // We return the current drift correction integrator values
// return the current drift correction integrator value
Vector3f get_integrator(void) {return _omega_I; }
float get_health(void) {return _health;}
void set_centripetal(bool b) {_centripetal = b;}
@ -52,13 +54,13 @@ public:
void set_compass(Compass *compass);
// Methods
void update_DCM(void);
void update_DCM(uint8_t drift_correction_frequency=1);
void update_DCM_fast(void);
void matrix_reset(bool recover_eulers = false);
long roll_sensor; // Degrees * 100
long pitch_sensor; // Degrees * 100
long yaw_sensor; // Degrees * 100
long yaw_sensor; // Degrees * 100
float roll; // Radians
float pitch; // Radians
@ -80,11 +82,6 @@ public:
float ki_yaw() { return _ki_yaw; }
void ki_yaw(float v) { _ki_yaw = v; }
static const float kDCM_kp_rp_high = 0.15;
static const float kDCM_kp_rp_medium = 0.05967;
static const float kDCM_kp_rp_low = 0.01;
int8_t _clamp;
// status reporting
float get_accel_weight(void);
float get_renorm_val(void);
@ -105,13 +102,12 @@ private:
void matrix_update(float _G_Dt);
void normalize(void);
void check_matrix(void);
Vector3f renorm(Vector3f const &a, int &problem);
void drift_correction(void);
bool renorm(Vector3f const &a, Vector3f &result);
void drift_correction(float deltat);
void euler_angles(void);
void euler_rp(void);
void euler_yaw(void);
// max rate of gyro drift in degrees/s/s
static const float _gyro_drift_rate = 0.04;
// members
Compass * _compass;
@ -129,21 +125,19 @@ private:
// to the main DCM update code
Vector3f _accel_vector;
Vector3f _accel_sum;
uint8_t _accel_sum_count;
Vector3f _gyro_vector; // Store the gyros turn rate in a vector
Vector3f _omega_P; // Omega Proportional correction
Vector3f _omega_I; // Omega Integrator correction
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
Vector3f _omega; // Corrected Gyro_Vector data
Vector3f _omega_sum;
Vector3f _omega_smoothed;
float _health;
bool _centripetal;
uint8_t _toggle;
// state to support status reporting
float _accel_weight_sum;
uint16_t _accel_weight_count;
float _renorm_val_sum;
uint16_t _renorm_val_count;
float _error_rp_sum;
@ -151,6 +145,16 @@ private:
float _error_yaw_sum;
uint16_t _error_yaw_count;
// time in micros when we last got a compass fix
uint32_t _compass_last_update;
// time in millis when we last got a GPS heading
uint32_t _gps_last_update;
// counter of calls to update_DCM() without drift correction
uint8_t _drift_correction_count;
float _drift_correction_time;
};
#endif