mirror of https://github.com/ArduPilot/ardupilot
SITL: SIM_Rover: add simulation for omni3 mecanum rover
Signed-off-by: Rhys Mainwaring <rhys.mainwaring@me.com>
This commit is contained in:
parent
0272f59d0c
commit
4354072d34
|
@ -21,6 +21,8 @@
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
|
#include <AP_Math/AP_Math.h>
|
||||||
|
|
||||||
namespace SITL {
|
namespace SITL {
|
||||||
|
|
||||||
SimRover::SimRover(const char *frame_str) :
|
SimRover::SimRover(const char *frame_str) :
|
||||||
|
@ -41,11 +43,15 @@ SimRover::SimRover(const char *frame_str) :
|
||||||
if (vectored_thrust) {
|
if (vectored_thrust) {
|
||||||
printf("Vectored Thrust Rover Simulation Started\n");
|
printf("Vectored Thrust Rover Simulation Started\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
omni3 = strstr(frame_str, "omni3mecanum") != nullptr;
|
||||||
|
if (omni3) {
|
||||||
|
printf("Omni3 Mecanum Rover Simulation Started\n");
|
||||||
|
}
|
||||||
|
|
||||||
lock_step_scheduled = true;
|
lock_step_scheduled = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
return turning circle (diameter) in meters for steering angle proportion in degrees
|
return turning circle (diameter) in meters for steering angle proportion in degrees
|
||||||
*/
|
*/
|
||||||
|
@ -93,55 +99,17 @@ float SimRover::calc_lat_accel(float steering_angle, float speed)
|
||||||
*/
|
*/
|
||||||
void SimRover::update(const struct sitl_input &input)
|
void SimRover::update(const struct sitl_input &input)
|
||||||
{
|
{
|
||||||
float steering, throttle;
|
|
||||||
|
|
||||||
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
|
|
||||||
if (skid_steering) {
|
|
||||||
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
||||||
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
||||||
steering = motor1 - motor2;
|
|
||||||
throttle = 0.5*(motor1 + motor2);
|
|
||||||
} else {
|
|
||||||
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
||||||
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
||||||
|
|
||||||
// vectored thrust conversion
|
|
||||||
if (vectored_thrust) {
|
|
||||||
const float steering_angle_rad = radians(steering * vectored_angle_max);
|
|
||||||
steering = sinf(steering_angle_rad) * throttle;
|
|
||||||
throttle *= cosf(steering_angle_rad);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// how much time has passed?
|
// how much time has passed?
|
||||||
float delta_time = frame_time_us * 1.0e-6f;
|
float delta_time = frame_time_us * 1.0e-6f;
|
||||||
|
|
||||||
// speed in m/s in body frame
|
// update gyro and accel_body according to frame type
|
||||||
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
if (omni3) {
|
||||||
|
update_omni3(input, delta_time);
|
||||||
|
} else {
|
||||||
|
update_ackermann_or_skid(input, delta_time);
|
||||||
|
}
|
||||||
|
|
||||||
// speed along x axis, +ve is forward
|
// common to all rovers
|
||||||
float speed = velocity_body.x;
|
|
||||||
|
|
||||||
// yaw rate in degrees/s
|
|
||||||
float yaw_rate = calc_yaw_rate(steering, speed);
|
|
||||||
|
|
||||||
// target speed with current throttle
|
|
||||||
float target_speed = throttle * max_speed;
|
|
||||||
|
|
||||||
// linear acceleration in m/s/s - very crude model
|
|
||||||
float accel = max_accel * (target_speed - speed) / max_speed;
|
|
||||||
|
|
||||||
gyro = Vector3f(0,0,radians(yaw_rate));
|
|
||||||
|
|
||||||
// update attitude
|
|
||||||
dcm.rotate(gyro * delta_time);
|
|
||||||
dcm.normalize();
|
|
||||||
|
|
||||||
// accel in body frame due to motor
|
|
||||||
accel_body = Vector3f(accel, 0, 0);
|
|
||||||
|
|
||||||
// add in accel due to direction change
|
|
||||||
accel_body.y += radians(yaw_rate) * speed;
|
|
||||||
|
|
||||||
// now in earth frame
|
// now in earth frame
|
||||||
Vector3f accel_earth = dcm * accel_body;
|
Vector3f accel_earth = dcm * accel_body;
|
||||||
|
@ -170,4 +138,126 @@ void SimRover::update(const struct sitl_input &input)
|
||||||
update_mag_field_bf();
|
update_mag_field_bf();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
update the ackermann or skid rover simulation by one time step
|
||||||
|
*/
|
||||||
|
void SimRover::update_ackermann_or_skid(const struct sitl_input &input, float delta_time)
|
||||||
|
{
|
||||||
|
float steering, throttle;
|
||||||
|
|
||||||
|
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
|
||||||
|
if (skid_steering) {
|
||||||
|
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||||||
|
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||||||
|
steering = motor1 - motor2;
|
||||||
|
throttle = 0.5*(motor1 + motor2);
|
||||||
|
} else {
|
||||||
|
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||||||
|
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||||||
|
|
||||||
|
// vectored thrust conversion
|
||||||
|
if (vectored_thrust) {
|
||||||
|
const float steering_angle_rad = radians(steering * vectored_angle_max);
|
||||||
|
steering = sinf(steering_angle_rad) * throttle;
|
||||||
|
throttle *= cosf(steering_angle_rad);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// speed in m/s in body frame
|
||||||
|
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
||||||
|
|
||||||
|
// speed along x axis, +ve is forward
|
||||||
|
float speed = velocity_body.x;
|
||||||
|
|
||||||
|
// yaw rate in degrees/s
|
||||||
|
float yaw_rate = calc_yaw_rate(steering, speed);
|
||||||
|
|
||||||
|
// target speed with current throttle
|
||||||
|
float target_speed = throttle * max_speed;
|
||||||
|
|
||||||
|
// linear acceleration in m/s/s - very crude model
|
||||||
|
float accel = max_accel * (target_speed - speed) / max_speed;
|
||||||
|
|
||||||
|
gyro = Vector3f(0,0,radians(yaw_rate));
|
||||||
|
|
||||||
|
// update attitude
|
||||||
|
dcm.rotate(gyro * delta_time);
|
||||||
|
dcm.normalize();
|
||||||
|
|
||||||
|
// accel in body frame due to motor (excluding gravity)
|
||||||
|
accel_body = Vector3f(accel, 0, 0);
|
||||||
|
|
||||||
|
// add in accel due to direction change
|
||||||
|
accel_body.y += radians(yaw_rate) * speed;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
update the omni3 rover simulation by one time step
|
||||||
|
*/
|
||||||
|
void SimRover::update_omni3(const struct sitl_input &input, float delta_time)
|
||||||
|
{
|
||||||
|
// in omni3 mode the first three servos are motor speeds
|
||||||
|
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
||||||
|
float motor2 = 2*((input.servos[1]-1000)/1000.0f - 0.5f);
|
||||||
|
float motor3 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
||||||
|
|
||||||
|
// use forward kinematics to calculate body frame velocity
|
||||||
|
Vector3f wheel_ang_vel(
|
||||||
|
motor1 * omni3_wheel_max_ang_vel,
|
||||||
|
motor2 * omni3_wheel_max_ang_vel,
|
||||||
|
motor3 * omni3_wheel_max_ang_vel
|
||||||
|
);
|
||||||
|
|
||||||
|
// derivation of forward kinematics for an Omni3Mecanum rover
|
||||||
|
// A. Gfrerrer. "Geometry and kinematics of the Mecanum wheel",
|
||||||
|
// Computer Aided Geometric Design 25 (2008) 784–791.
|
||||||
|
// Retrieved from https://www.geometrie.tugraz.at/gfrerrer/publications/MecanumWheel.pdf.
|
||||||
|
//
|
||||||
|
// the frame is equilateral triangle
|
||||||
|
//
|
||||||
|
// d[i] = 0.18 m is distance from frame centre to each wheel
|
||||||
|
// r_w = 0.04725 m is the wheel radius.
|
||||||
|
// delta = radians(-45) is angle of the roller to the direction of forward rotation
|
||||||
|
// alpha[i] is the angle the wheel axis is rotated about the body z-axis
|
||||||
|
// c[i] = cos(alpha[i] + delta)
|
||||||
|
// s[i] = sin(alpha[i] + delta)
|
||||||
|
//
|
||||||
|
// wheel d[i] alpha[i] a_x[i] a_y[i] c[i] s[i]
|
||||||
|
// 1 0.18 1.04719 0.09 0.15588 0.965925 0.258819
|
||||||
|
// 2 0.18 3.14159 -0.18 0.0 -0.707106 0.707106
|
||||||
|
// 3 0.18 5.23598 0.09 -0.15588 -0.258819 -0.965925
|
||||||
|
//
|
||||||
|
// k = 1/(r_w * sin(delta)) = -29.930445 is a scale factor
|
||||||
|
//
|
||||||
|
// inverse kinematic matrix
|
||||||
|
// M[i, 0] = k * c[i]
|
||||||
|
// M[i, 1] = k * s[i]
|
||||||
|
// M[i, 2] = k * (a_x[i] s[i] - a_y[i] c[i])
|
||||||
|
//
|
||||||
|
// forward kinematics matrix: Minv = M^-1
|
||||||
|
constexpr Matrix3f Minv(
|
||||||
|
-0.0215149, 0.01575, 0.0057649,
|
||||||
|
-0.0057649, -0.01575, 0.0215149,
|
||||||
|
0.0875, 0.0875, 0.0875);
|
||||||
|
|
||||||
|
// twist - this is the target linear and angular velocity
|
||||||
|
Vector3f twist = Minv * wheel_ang_vel;
|
||||||
|
|
||||||
|
// speed in m/s in body frame
|
||||||
|
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
||||||
|
|
||||||
|
// linear acceleration in m/s/s - very crude model
|
||||||
|
float accel_x = omni3_max_accel * (twist.x - velocity_body.x) / omni3_max_speed;
|
||||||
|
float accel_y = omni3_max_accel * (twist.y - velocity_body.y) / omni3_max_speed;
|
||||||
|
|
||||||
|
gyro = Vector3f(0, 0, twist.z);
|
||||||
|
|
||||||
|
// update attitude
|
||||||
|
dcm.rotate(gyro * delta_time);
|
||||||
|
dcm.normalize();
|
||||||
|
|
||||||
|
// accel in body frame due to motors (excluding gravity)
|
||||||
|
accel_body = Vector3f(accel_x, accel_y, 0);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace SITL
|
} // namespace SITL
|
||||||
|
|
|
@ -51,6 +51,15 @@ private:
|
||||||
float vectored_angle_max = 90.0f; // maximum angle (in degrees) to which thrust can be turned
|
float vectored_angle_max = 90.0f; // maximum angle (in degrees) to which thrust can be turned
|
||||||
float vectored_turn_rate_max = 90.0f; // maximum turn rate (in deg/sec) with full throttle angled at 90deg
|
float vectored_turn_rate_max = 90.0f; // maximum turn rate (in deg/sec) with full throttle angled at 90deg
|
||||||
|
|
||||||
|
// omni3 Mecanum related members
|
||||||
|
bool omni3; // true if vehicle is omni-directional with 3 Mecanum wheels
|
||||||
|
float omni3_max_speed = 2.3625f; // omni vehicle's maximum forward speed in m/s
|
||||||
|
float omni3_max_accel = 1.0f; // omni vehicle's maximum forward acceleration in m/s/s
|
||||||
|
float omni3_wheel_max_ang_vel = 50.0f; // omni vehicle's wheel maximum angular velocity in rad/s
|
||||||
|
|
||||||
|
void update_ackermann_or_skid(const struct sitl_input &input, float delta_time);
|
||||||
|
void update_omni3(const struct sitl_input &input, float delta_time);
|
||||||
|
|
||||||
float turn_circle(float steering) const;
|
float turn_circle(float steering) const;
|
||||||
float calc_yaw_rate(float steering, float speed);
|
float calc_yaw_rate(float steering, float speed);
|
||||||
float calc_lat_accel(float steering_angle, float speed);
|
float calc_lat_accel(float steering_angle, float speed);
|
||||||
|
|
Loading…
Reference in New Issue