Tools/LogAnalyzer: apply Black and isort

This commit is contained in:
Luiz Georg 2022-07-18 11:09:04 -03:00 committed by Peter Barker
parent 545cf0504a
commit 42f202d0ff
22 changed files with 1388 additions and 841 deletions

View File

@ -5,17 +5,20 @@
#
from __future__ import print_function
import collections
import numpy
import bisect
import sys
import ctypes
import bisect
import collections
import ctypes
import sys
import numpy
from VehicleType import VehicleType, VehicleTypeString
class Format(object):
'''Data channel format as specified by the FMT lines in the log file'''
def __init__(self,msgType,msgLen,name,types,labels):
def __init__(self, msgType, msgLen, name, types, labels):
self.NAME = 'FMT'
self.msgType = msgType
self.msgLen = msgLen
@ -27,7 +30,7 @@ class Format(object):
return "%8s %s" % (self.name, repr(self.labels))
@staticmethod
def trycastToFormatType(value,valueType):
def trycastToFormatType(value, valueType):
'''using format characters from libraries/DataFlash/DataFlash.h to cast strings to basic python int/float/string types
tries a cast, if it does not work, well, acceptable as the text logs do not match the format, e.g. MODE is expected to be int'''
try:
@ -43,8 +46,8 @@ class Format(object):
def to_class(self):
members = dict(
NAME = self.name,
labels = self.labels[:],
NAME=self.name,
labels=self.labels[:],
)
fieldtypes = [i for i in self.types]
@ -52,51 +55,56 @@ class Format(object):
# field access
for (label, _type) in zip(fieldlabels, fieldtypes):
def createproperty(name, format):
# extra scope for variable sanity
# scaling via _NAME and def NAME(self): return self._NAME / SCALE
propertyname = name
attributename = '_' + name
p = property(lambda x:getattr(x, attributename),
lambda x, v:setattr(x,attributename, Format.trycastToFormatType(v,format)))
p = property(
lambda x: getattr(x, attributename),
lambda x, v: setattr(x, attributename, Format.trycastToFormatType(v, format)),
)
members[propertyname] = p
members[attributename] = None
createproperty(label, _type)
# repr shows all values but the header
members['__repr__'] = lambda x: "<{cls} {data}>".format(cls=x.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(x,'_'+k)) for k in x.labels]))
members['__repr__'] = lambda x: "<{cls} {data}>".format(
cls=x.__class__.__name__, data=' '.join(["{}:{}".format(k, getattr(x, '_' + k)) for k in x.labels])
)
def init(a, *x):
if len(x) != len(a.labels):
raise ValueError("Invalid Length")
#print(list(zip(a.labels, x)))
for (l,v) in zip(a.labels, x):
# print(list(zip(a.labels, x)))
for (l, v) in zip(a.labels, x):
try:
setattr(a, l, v)
except Exception as e:
print("{} {} {} failed".format(a,l,v))
print("{} {} {} failed".format(a, l, v))
print(e)
members['__init__'] = init
# finally, create the class
cls = type(\
'Log__{:s}'.format(self.name),
(object,),
members
)
#print(members)
cls = type('Log__{:s}'.format(self.name), (object,), members)
# print(members)
return cls
class logheader(ctypes.LittleEndianStructure):
_fields_ = [ \
_fields_ = [
('head1', ctypes.c_uint8),
('head2', ctypes.c_uint8),
('msgid', ctypes.c_uint8),
]
def __repr__(self):
return "<logheader head1=0x{self.head1:x} head2=0x{self.head2:x} msgid=0x{self.msgid:x} ({self.msgid})>".format(self=self)
return "<logheader head1=0x{self.head1:x} head2=0x{self.head2:x} msgid=0x{self.msgid:x} ({self.msgid})>".format(
self=self
)
class BinaryFormat(ctypes.LittleEndianStructure):
@ -116,10 +124,10 @@ class BinaryFormat(ctypes.LittleEndianStructure):
'n': ctypes.c_char * 4,
'N': ctypes.c_char * 16,
'Z': ctypes.c_char * 64,
'c': ctypes.c_int16,# * 100,
'C': ctypes.c_uint16,# * 100,
'e': ctypes.c_int32,# * 100,
'E': ctypes.c_uint32,# * 100,
'c': ctypes.c_int16, # * 100,
'C': ctypes.c_uint16, # * 100,
'e': ctypes.c_int32, # * 100,
'E': ctypes.c_uint32, # * 100,
'L': ctypes.c_int32,
'M': ctypes.c_uint8,
'q': ctypes.c_int64,
@ -134,7 +142,7 @@ class BinaryFormat(ctypes.LittleEndianStructure):
}
_packed_ = True
_fields_ = [ \
_fields_ = [
('head', logheader),
('type', ctypes.c_uint8),
('length', ctypes.c_uint8),
@ -142,17 +150,18 @@ class BinaryFormat(ctypes.LittleEndianStructure):
('types', ctypes.c_char * 16),
('labels', ctypes.c_char * 64),
]
def __repr__(self):
return "<{cls} {data}>".format(cls=self.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(self,k)) for (k,_) in self._fields_[1:]]))
return "<{cls} {data}>".format(
cls=self.__class__.__name__,
data=' '.join(["{}:{}".format(k, getattr(self, k)) for (k, _) in self._fields_[1:]]),
)
def to_class(self):
labels = self.labels.decode('ascii') if self.labels else ""
members = dict(
NAME = self.name.decode('ascii'),
MSG = self.type,
SIZE = self.length,
labels = labels.split(","),
_pack_ = True)
NAME=self.name.decode('ascii'), MSG=self.type, SIZE=self.length, labels=labels.split(","), _pack_=True
)
if type(self.types[0]) == str:
fieldtypes = [i for i in self.types]
@ -163,53 +172,57 @@ class BinaryFormat(ctypes.LittleEndianStructure):
print("Broken FMT message for {} .. ignoring".format(self.name), file=sys.stderr)
return None
fields = [('head',logheader)]
fields = [('head', logheader)]
# field access
for (label, _type) in zip(fieldlabels, fieldtypes):
def createproperty(name, format):
# extra scope for variable sanity
# scaling via _NAME and def NAME(self): return self._NAME / SCALE
propertyname = name
attributename = '_' + name
scale = BinaryFormat.FIELD_SCALE.get(format, None)
def get_message_attribute(x):
ret = getattr(x, attributename)
if str(format) in ['Z','n','N']:
if str(format) in ['Z', 'n', 'N']:
ret = ret.decode('ascii')
return ret
p = property(get_message_attribute)
if scale is not None:
p = property(lambda x:getattr(x, attributename) / scale)
p = property(lambda x: getattr(x, attributename) / scale)
members[propertyname] = p
try:
fields.append((attributename, BinaryFormat.FIELD_FORMAT[format]))
except KeyError:
print('ERROR: Failed to add FMT type: {}, with format: {}'.format(attributename, format))
raise
createproperty(label, _type)
members['_fields_'] = fields
# repr shows all values but the header
members['__repr__'] = lambda x: "<{cls} {data}>".format(cls=x.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(x,k)) for k in x.labels]))
members['__repr__'] = lambda x: "<{cls} {data}>".format(
cls=x.__class__.__name__, data=' '.join(["{}:{}".format(k, getattr(x, k)) for k in x.labels])
)
# finally, create the class
cls = type(\
'Log__%s' % self.name,
(ctypes.LittleEndianStructure,),
members
)
cls = type('Log__%s' % self.name, (ctypes.LittleEndianStructure,), members)
if ctypes.sizeof(cls) != cls.SIZE:
print("size mismatch for {} expected {} got {}".format(cls, ctypes.sizeof(cls), cls.SIZE), file=sys.stderr)
# for i in cls.labels:
# print("{} = {}".format(i,getattr(cls,'_'+i)))
# for i in cls.labels:
# print("{} = {}".format(i,getattr(cls,'_'+i)))
return None
return cls
BinaryFormat.SIZE = ctypes.sizeof(BinaryFormat)
class Channel(object):
'''storage for a single stream of data, i.e. all GPS.RelAlt values'''
@ -217,39 +230,50 @@ class Channel(object):
# TODO: store data as a scipy spline curve so we can more easily interpolate and sample the slope?
def __init__(self):
self.dictData = {} # dict of linenum->value # store dupe data in dict and list for now, until we decide which is the better way to go
self.listData = [] # list of (linenum,value) # store dupe data in dict and list for now, until we decide which is the better way to go
self.dictData = (
{}
) # dict of linenum->value # store dupe data in dict and list for now, until we decide which is the better way to go
self.listData = (
[]
) # list of (linenum,value) # store dupe data in dict and list for now, until we decide which is the better way to go
def getSegment(self, startLine, endLine):
'''returns a segment of this data (from startLine to endLine, inclusive) as a new Channel instance'''
segment = Channel()
segment.dictData = {k:v for k,v in self.dictData.items() if k >= startLine and k <= endLine}
segment.dictData = {k: v for k, v in self.dictData.items() if k >= startLine and k <= endLine}
return segment
def min(self):
return min(self.dictData.values())
def max(self):
return max(self.dictData.values())
def avg(self):
return numpy.mean(self.dictData.values())
def getNearestValueFwd(self, lineNumber):
'''Returns (value,lineNumber)'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999))
while index<len(self.listData):
index = bisect.bisect_left(self.listData, (lineNumber, -99999))
while index < len(self.listData):
line = self.listData[index][0]
#print("Looking forwards for nearest value to line number %d, starting at line %d" % (lineNumber,line)) # TEMP
# print("Looking forwards for nearest value to line number %d, starting at line %d" % (lineNumber,line)) # TEMP
if line >= lineNumber:
return (self.listData[index][1],line)
return (self.listData[index][1], line)
index += 1
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getNearestValueBack(self, lineNumber):
'''Returns (value,lineNumber)'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999)) - 1
while index>=0:
index = bisect.bisect_left(self.listData, (lineNumber, -99999)) - 1
while index >= 0:
line = self.listData[index][0]
#print("Looking backwards for nearest value to line number %d, starting at line %d" % (lineNumber,line)) # TEMP
# print("Looking backwards for nearest value to line number %d, starting at line %d" % (lineNumber,line)) # TEMP
if line <= lineNumber:
return (self.listData[index][1],line)
return (self.listData[index][1], line)
index -= 1
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getNearestValue(self, lineNumber, lookForwards=True):
'''find the nearest data value to the given lineNumber, defaults to first looking forwards. Returns (value,lineNumber)'''
if lookForwards:
@ -263,36 +287,43 @@ class Channel(object):
except:
return self.getNearestValueFwd(lineNumber)
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getInterpolatedValue(self, lineNumber):
(prevValue,prevValueLine) = self.getNearestValue(lineNumber, lookForwards=False)
(nextValue,nextValueLine) = self.getNearestValue(lineNumber, lookForwards=True)
(prevValue, prevValueLine) = self.getNearestValue(lineNumber, lookForwards=False)
(nextValue, nextValueLine) = self.getNearestValue(lineNumber, lookForwards=True)
if prevValueLine == nextValueLine:
return prevValue
weight = (lineNumber-prevValueLine) / float(nextValueLine-prevValueLine)
return ((weight*prevValue) + ((1-weight)*nextValue))
weight = (lineNumber - prevValueLine) / float(nextValueLine - prevValueLine)
return (weight * prevValue) + ((1 - weight) * nextValue)
def getIndexOf(self, lineNumber):
'''returns the index within this channel's listData of the given lineNumber, or raises an Exception if not found'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999))
#print("INDEX of line %d: %d" % (lineNumber,index))
#print("self.listData[index][0]: %d" % self.listData[index][0])
if (self.listData[index][0] == lineNumber):
index = bisect.bisect_left(self.listData, (lineNumber, -99999))
# print("INDEX of line %d: %d" % (lineNumber,index))
# print("self.listData[index][0]: %d" % self.listData[index][0])
if self.listData[index][0] == lineNumber:
return index
else:
raise Exception("Error finding index for line %d" % lineNumber)
class LogIterator:
'''Smart iterator that can move through a log by line number and maintain an index into the nearest values of all data channels'''
# TODO: LogIterator currently indexes the next available value rather than the nearest value, we should make it configurable between next/nearest
class LogIteratorSubValue:
'''syntactic sugar to allow access by LogIterator[lineLabel][dataLabel]'''
logdata = None
iterators = None
lineLabel = None
def __init__(self, logdata, iterators, lineLabel):
self.logdata = logdata
self.lineLabel = lineLabel
self.iterators = iterators
def __getitem__(self, dataLabel):
index = self.iterators[self.lineLabel][0]
return self.logdata.channels[self.lineLabel][dataLabel].listData[index][1]
@ -308,10 +339,13 @@ class LogIterator:
if lineLabel in self.logdata.channels:
self.iterators[lineLabel] = ()
self.jump(lineNumber)
def __iter__(self):
return self
def __getitem__(self, lineLabel):
return LogIterator.LogIteratorSubValue(self.logdata, self.iterators, lineLabel)
def next(self):
'''increment iterator to next log line'''
self.currentLine += 1
@ -322,17 +356,20 @@ class LogIterator:
dataLabel = self.logdata.formats[lineLabel].labels[0]
(index, lineNumber) = self.iterators[lineLabel]
# if so, and it is not the last entry in the log, then increment the indices for all dataLabels under that lineLabel
if (self.currentLine > lineNumber) and (index < len(self.logdata.channels[lineLabel][dataLabel].listData)-1):
if (self.currentLine > lineNumber) and (
index < len(self.logdata.channels[lineLabel][dataLabel].listData) - 1
):
index += 1
lineNumber = self.logdata.channels[lineLabel][dataLabel].listData[index][0]
self.iterators[lineLabel] = (index,lineNumber)
self.iterators[lineLabel] = (index, lineNumber)
return self
def jump(self, lineNumber):
'''jump iterator to specified log line'''
self.currentLine = lineNumber
for lineLabel in self.iterators.keys():
dataLabel = self.logdata.formats[lineLabel].labels[0]
(value,lineNumber) = self.logdata.channels[lineLabel][dataLabel].getNearestValue(self.currentLine)
(value, lineNumber) = self.logdata.channels[lineLabel][dataLabel].getNearestValue(self.currentLine)
self.iterators[lineLabel] = (self.logdata.channels[lineLabel][dataLabel].getIndexOf(lineNumber), lineNumber)
@ -367,8 +404,8 @@ class DataflashLogHelper:
# TODO: implement noRCInputs handling when identifying stable loiter chunks, for now we're ignoring it
def chunkSizeCompare(chunk1, chunk2):
chunk1Len = chunk1[1]-chunk1[0]
chunk2Len = chunk2[1]-chunk2[0]
chunk1Len = chunk1[1] - chunk1[0]
chunk2Len = chunk2[1] - chunk2[0]
if chunk1Len == chunk2Len:
return 0
elif chunk1Len > chunk2Len:
@ -382,15 +419,19 @@ class DataflashLogHelper:
if od.values()[i][0] == "LOITER":
startLine = od.keys()[i]
endLine = None
if i == len(od.keys())-1:
if i == len(od.keys()) - 1:
endLine = logdata.lineCount
else:
endLine = od.keys()[i+1]-1
chunkTimeSeconds = (DataflashLogHelper.getTimeAtLine(logdata,endLine)-DataflashLogHelper.getTimeAtLine(logdata,startLine)+1) / 1000.0
endLine = od.keys()[i + 1] - 1
chunkTimeSeconds = (
DataflashLogHelper.getTimeAtLine(logdata, endLine)
- DataflashLogHelper.getTimeAtLine(logdata, startLine)
+ 1
) / 1000.0
if chunkTimeSeconds > minLengthSeconds:
chunks.append((startLine,endLine))
#print("LOITER chunk: %d to %d, %d lines" % (startLine,endLine,endLine-startLine+1))
#print(" (time %d to %d, %d seconds)" % (DataflashLogHelper.getTimeAtLine(logdata,startLine), DataflashLogHelper.getTimeAtLine(logdata,endLine), chunkTimeSeconds))
chunks.append((startLine, endLine))
# print("LOITER chunk: %d to %d, %d lines" % (startLine,endLine,endLine-startLine+1))
# print(" (time %d to %d, %d seconds)" % (DataflashLogHelper.getTimeAtLine(logdata,startLine), DataflashLogHelper.getTimeAtLine(logdata,endLine), chunkTimeSeconds))
chunks.sort(chunkSizeCompare)
return chunks
@ -471,20 +512,20 @@ class DataflashLog(object):
"OCTA": 8,
"OCTA_QUAD": 8,
"DECA": 10,
# "HELI": 1,
# "HELI_DUAL": 2,
# "HELI": 1,
# "HELI_DUAL": 2,
"TRI": 3,
"SINGLE": 1,
"COAX": 2,
"TAILSITTER": 1,
"DODECA_HEXA" : 12,
"DODECA_HEXA": 12,
}
return motor_channels_for_frame[self.frame]
def read(self, logfile, format="auto", ignoreBadlines=False):
'''returns on successful log read (including bad lines if ignoreBadlines==True), will throw an Exception otherwise'''
# TODO: dataflash log parsing code is pretty hacky, should re-write more methodically
df_header = bytearray([0xa3, 0x95, 0x80, 0x80])
df_header = bytearray([0xA3, 0x95, 0x80, 0x80])
self.filename = logfile
if self.filename == '<stdin>':
f = sys.stdin
@ -498,7 +539,7 @@ class DataflashLog(object):
elif format == 'auto':
if self.filename == '<stdin>':
# assuming TXT format
# raise ValueError("Invalid log format for stdin: {}".format(format))
# raise ValueError("Invalid log format for stdin: {}".format(format))
head = ""
else:
head = f.read(4)
@ -519,7 +560,7 @@ class DataflashLog(object):
if "GPS" in self.channels:
# the GPS time label changed at some point, need to handle both
timeLabel = None
for i in 'TimeMS','TimeUS','Time':
for i in 'TimeMS', 'TimeUS', 'Time':
if i in self.channels["GPS"]:
timeLabel = i
break
@ -528,7 +569,7 @@ class DataflashLog(object):
if timeLabel == 'TimeUS':
firstTimeGPS /= 1000
lastTimeGPS /= 1000
self.durationSecs = (lastTimeGPS-firstTimeGPS) / 1000
self.durationSecs = (lastTimeGPS - firstTimeGPS) / 1000
# TODO: calculate logging rate based on timestamps
# ...
@ -537,7 +578,7 @@ class DataflashLog(object):
"ArduCopter": VehicleType.Copter,
"APM:Copter": VehicleType.Copter,
"ArduPlane": VehicleType.Plane,
"ArduRover": VehicleType.Rover
"ArduRover": VehicleType.Rover,
}
# takes the vehicle type supplied via "MSG" and sets vehicleType from
@ -552,26 +593,26 @@ class DataflashLog(object):
def handleModeChange(self, lineNumber, e):
if self.vehicleType == VehicleType.Copter:
modes = {
0:'STABILIZE',
1:'ACRO',
2:'ALT_HOLD',
3:'AUTO',
4:'GUIDED',
5:'LOITER',
6:'RTL',
7:'CIRCLE',
9:'LAND',
10:'OF_LOITER',
11:'DRIFT',
13:'SPORT',
14:'FLIP',
15:'AUTOTUNE',
16:'POSHOLD',
17:'BRAKE',
18:'THROW',
19:'AVOID_ADSB',
20:'GUIDED_NOGPS',
21:'SMART_RTL',
0: 'STABILIZE',
1: 'ACRO',
2: 'ALT_HOLD',
3: 'AUTO',
4: 'GUIDED',
5: 'LOITER',
6: 'RTL',
7: 'CIRCLE',
9: 'LAND',
10: 'OF_LOITER',
11: 'DRIFT',
13: 'SPORT',
14: 'FLIP',
15: 'AUTOTUNE',
16: 'POSHOLD',
17: 'BRAKE',
18: 'THROW',
19: 'AVOID_ADSB',
20: 'GUIDED_NOGPS',
21: 'SMART_RTL',
}
try:
if hasattr(e, 'ThrCrs'):
@ -599,7 +640,9 @@ class DataflashLog(object):
else:
# if you've gotten to here the chances are we don't
# know what vehicle you're flying...
raise Exception("Unknown log type for MODE line vehicletype=({}) line=({})".format(self.vehicleTypeString, repr(e)))
raise Exception(
"Unknown log type for MODE line vehicletype=({}) line=({})".format(self.vehicleTypeString, repr(e))
)
def backPatchModeChanges(self):
for (lineNumber, e) in self.backpatch_these_modechanges:
@ -625,7 +668,7 @@ class DataflashLog(object):
self.set_frame(tokens[1])
if not self.vehicleType:
try:
self.set_vehicleType_from_MSG_vehicle(tokens[0]);
self.set_vehicleType_from_MSG_vehicle(tokens[0])
except ValueError:
return
self.backPatchModeChanges()
@ -636,7 +679,7 @@ class DataflashLog(object):
self.messages[lineNumber] = e.Message
elif e.NAME == "MODE":
if self.vehicleType is None:
self.backpatch_these_modechanges.append( (lineNumber, e) )
self.backpatch_these_modechanges.append((lineNumber, e))
else:
self.handleModeChange(lineNumber, e)
# anything else must be the log data
@ -656,9 +699,8 @@ class DataflashLog(object):
channel.dictData[lineNumber] = value
channel.listData.append((lineNumber, value))
def read_text(self, f, ignoreBadlines):
self.formats = {'FMT':Format}
self.formats = {'FMT': Format}
lineNumber = 0
numBytes = 0
knownHardwareTypes = ["APM", "PX4", "MPNG"]
@ -666,14 +708,16 @@ class DataflashLog(object):
lineNumber = lineNumber + 1
numBytes += len(line) + 1
try:
#print("Reading line: %d" % lineNumber)
# print("Reading line: %d" % lineNumber)
line = line.strip('\n\r')
tokens = line.split(', ')
# first handle the log header lines
if line == " Ready to drive." or line == " Ready to FLY.":
continue
if line == "----------------------------------------": # present in pre-3.0 logs
raise Exception("Log file seems to be in the older format (prior to self-describing logs), which isn't supported")
raise Exception(
"Log file seems to be in the older format (prior to self-describing logs), which isn't supported"
)
if len(tokens) == 1:
tokens2 = line.split(' ')
if line == "":
@ -684,7 +728,9 @@ class DataflashLog(object):
self.freeRAM = int(tokens2[2])
elif tokens2[0] in knownHardwareTypes:
self.hardwareType = line # not sure if we can parse this more usefully, for now only need to report it back verbatim
elif (len(tokens2) == 2 or len(tokens2) == 3) and tokens2[1][0].lower() == "v": # e.g. ArduCopter V3.1 (5c6503e2)
elif (len(tokens2) == 2 or len(tokens2) == 3) and tokens2[1][
0
].lower() == "v": # e.g. ArduCopter V3.1 (5c6503e2)
try:
self.set_vehicleType_from_MSG_vehicle(tokens2[0])
except ValueError:
@ -707,8 +753,10 @@ class DataflashLog(object):
except Exception as e:
print("BAD LINE: " + str(line), file=sys.stderr)
if not ignoreBadlines:
raise Exception("Error parsing line %d of log file %s - %s" % (lineNumber,self.filename,e.args[0]))
return (numBytes,lineNumber)
raise Exception(
"Error parsing line %d of log file %s - %s" % (lineNumber, self.filename, e.args[0])
)
return (numBytes, lineNumber)
def read_binary(self, f, ignoreBadlines):
lineNumber = 0
@ -718,22 +766,27 @@ class DataflashLog(object):
if e is None:
continue
numBytes += e.SIZE
# print(e)
# print(e)
self.process(lineNumber, e)
return (numBytes,lineNumber)
return (numBytes, lineNumber)
def _read_binary(self, f, ignoreBadlines):
self._formats = {128:BinaryFormat}
self._formats = {128: BinaryFormat}
data = bytearray(f.read())
offset = 0
while len(data) > offset + ctypes.sizeof(logheader):
h = logheader.from_buffer(data, offset)
if not (h.head1 == 0xa3 and h.head2 == 0x95):
if not (h.head1 == 0xA3 and h.head2 == 0x95):
if ignoreBadlines == False:
raise ValueError(h)
else:
if h.head1 == 0xff and h.head2 == 0xff and h.msgid == 0xff:
print("Assuming EOF due to dataflash block tail filled with \\xff... (offset={off})".format(off=offset), file=sys.stderr)
if h.head1 == 0xFF and h.head2 == 0xFF and h.msgid == 0xFF:
print(
"Assuming EOF due to dataflash block tail filled with \\xff... (offset={off})".format(
off=offset
),
file=sys.stderr,
)
break
offset += 1
continue
@ -745,7 +798,11 @@ class DataflashLog(object):
try:
e = typ.from_buffer(data, offset)
except:
print("data:{} offset:{} size:{} sizeof:{} sum:{}".format(len(data),offset,typ.SIZE,ctypes.sizeof(typ),offset+typ.SIZE))
print(
"data:{} offset:{} size:{} sizeof:{} sum:{}".format(
len(data), offset, typ.SIZE, ctypes.sizeof(typ), offset + typ.SIZE
)
)
raise
offset += typ.SIZE
else:

View File

@ -19,31 +19,35 @@
from __future__ import print_function
import DataflashLog
import pprint # temp
import imp
import glob
import inspect
import os, sys
import argparse
import datetime
import glob
import imp
import inspect
import os
import pprint # temp
import sys
import time
from xml.sax.saxutils import escape
import DataflashLog
from VehicleType import VehicleType
class TestResult(object):
'''all tests return a standardized result type'''
class StatusType:
# NA means not applicable for this log (e.g. copter tests against a plane log), UNKNOWN means it is missing data required for the test
GOOD, FAIL, WARN, UNKNOWN, NA = range(5)
status = None
statusMessage = "" # can be multi-line
class Test(object):
'''base class to be inherited by log tests. Each test should be quite granular so we have lots of small tests with clear results'''
def __init__(self):
self.name = ""
self.result = None # will be an instance of TestResult after being run
@ -56,6 +60,7 @@ class Test(object):
class TestSuite(object):
'''registers test classes, loading using a basic plugin architecture, and can run them all in one run() operation'''
def __init__(self):
self.tests = []
self.logfile = None
@ -66,7 +71,7 @@ class TestSuite(object):
testScripts = glob.glob(dirName + '/tests/*.py')
testClasses = []
for script in testScripts:
m = imp.load_source("m",script)
m = imp.load_source("m", script)
for name, obj in inspect.getmembers(m, inspect.isclass):
if name not in testClasses and inspect.getsourcefile(obj) == script:
testClasses.append(name)
@ -90,7 +95,7 @@ class TestSuite(object):
startTime = time.time()
test.run(self.logdata, verbose) # RUN THE TEST
endTime = time.time()
test.execTime = 1000 * (endTime-startTime)
test.execTime = 1000 * (endTime - startTime)
def outputPlainText(self, outputStats):
'''output test results in plain text'''
@ -129,12 +134,14 @@ class TestSuite(object):
continue
else:
print(" %20s: UNKNOWN %-55s%s" % (test.name, statusMessageFirstLine, execTime))
#if statusMessageExtra:
# if statusMessageExtra:
for line in statusMessageExtra:
print(" %29s %s" % ("",line))
print(" %29s %s" % ("", line))
print('\n')
print('The Log Analyzer is currently BETA code.\nFor any support or feedback on the log analyzer please email Andrew Chapman (amchapman@gmail.com)')
print(
'The Log Analyzer is currently BETA code.\nFor any support or feedback on the log analyzer please email Andrew Chapman (amchapman@gmail.com)'
)
print('\n')
def outputXML(self, xmlFile):
@ -151,7 +158,6 @@ class TestSuite(object):
sys.stderr.write("Error opening output xml file: %s" % xmlFile)
sys.exit(1)
# output header info
xml.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
xml.write("<loganalysis>\n")
@ -173,7 +179,7 @@ class TestSuite(object):
# output parameters
xml.write("<params>\n")
for param, value in self.logdata.parameters.items():
xml.write(" <param name=\"%s\" value=\"%s\" />\n" % (param,escape(repr(value))))
xml.write(" <param name=\"%s\" value=\"%s\" />\n" % (param, escape(repr(value))))
xml.write("</params>\n")
# output test results
@ -217,12 +223,38 @@ def main():
# deal with command line arguments
parser = argparse.ArgumentParser(description='Analyze an APM Dataflash log for known issues')
parser.add_argument('logfile', type=argparse.FileType('r'), help='path to Dataflash log file (or - for stdin)')
parser.add_argument('-f', '--format', metavar='', type=str, action='store', choices=['bin','log','auto'], default='auto', help='log file format: \'bin\',\'log\' or \'auto\'')
parser.add_argument('-q', '--quiet', metavar='', action='store_const', const=True, help='quiet mode, do not print results')
parser.add_argument('-p', '--profile', metavar='', action='store_const', const=True, help='output performance profiling data')
parser.add_argument('-s', '--skip_bad', metavar='', action='store_const', const=True, help='skip over corrupt dataflash lines')
parser.add_argument('-e', '--empty', metavar='', action='store_const', const=True, help='run an initial check for an empty log')
parser.add_argument('-x', '--xml', type=str, metavar='XML file', nargs='?', const='', default='', help='write output to specified XML file (or - for stdout)')
parser.add_argument(
'-f',
'--format',
metavar='',
type=str,
action='store',
choices=['bin', 'log', 'auto'],
default='auto',
help='log file format: \'bin\',\'log\' or \'auto\'',
)
parser.add_argument(
'-q', '--quiet', metavar='', action='store_const', const=True, help='quiet mode, do not print results'
)
parser.add_argument(
'-p', '--profile', metavar='', action='store_const', const=True, help='output performance profiling data'
)
parser.add_argument(
'-s', '--skip_bad', metavar='', action='store_const', const=True, help='skip over corrupt dataflash lines'
)
parser.add_argument(
'-e', '--empty', metavar='', action='store_const', const=True, help='run an initial check for an empty log'
)
parser.add_argument(
'-x',
'--xml',
type=str,
metavar='XML file',
nargs='?',
const='',
default='',
help='write output to specified XML file (or - for stdout)',
)
parser.add_argument('-v', '--verbose', metavar='', action='store_const', const=True, help='verbose output')
args = parser.parse_args()
@ -231,7 +263,7 @@ def main():
logdata = DataflashLog.DataflashLog(args.logfile.name, format=args.format, ignoreBadlines=args.skip_bad) # read log
endTime = time.time()
if args.profile:
print("Log file read time: %.2f seconds" % (endTime-startTime))
print("Log file read time: %.2f seconds" % (endTime - startTime))
# check for empty log if requested
if args.empty:
@ -240,13 +272,13 @@ def main():
sys.stderr.write("Empty log file: %s, %s" % (logdata.filename, emptyErr))
sys.exit(1)
#run the tests, and gather timings
# run the tests, and gather timings
testSuite = TestSuite()
startTime = time.time()
testSuite.run(logdata, args.verbose) # run tests
endTime = time.time()
if args.profile:
print("Test suite run time: %.2f seconds" % (endTime-startTime))
print("Test suite run time: %.2f seconds" % (endTime - startTime))
# deal with output
if not args.quiet:
@ -259,4 +291,3 @@ def main():
if __name__ == "__main__":
main()

File diff suppressed because one or more lines are too long

View File

@ -1,12 +1,9 @@
class VehicleType():
class VehicleType:
Plane = 17
Copter = 23
Rover = 37
# these should really be "Plane", "Copter" and "Rover", but many
# things use these values as triggers in their code:
VehicleTypeString = {
17: "ArduPlane",
23: "ArduCopter",
37: "ArduRover"
}
VehicleTypeString = {17: "ArduPlane", 23: "ArduCopter", 37: "ArduRover"}

View File

@ -1,5 +1,5 @@
from LogAnalyzer import Test, TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
# from ArduCopter/defines.h
@ -12,14 +12,19 @@ AUTOTUNE_REACHED_LIMIT = 35
AUTOTUNE_PILOT_TESTING = 36
AUTOTUNE_SAVEDGAINS = 37
AUTOTUNE_EVENTS = frozenset([AUTOTUNE_INITIALISED,
AUTOTUNE_EVENTS = frozenset(
[
AUTOTUNE_INITIALISED,
AUTOTUNE_OFF,
AUTOTUNE_RESTART,
AUTOTUNE_SUCCESS,
AUTOTUNE_FAILED,
AUTOTUNE_REACHED_LIMIT,
AUTOTUNE_PILOT_TESTING,
AUTOTUNE_SAVEDGAINS])
AUTOTUNE_SAVEDGAINS,
]
)
class TestAutotune(Test):
'''test for autotune success (copter only)'''
@ -27,25 +32,29 @@ class TestAutotune(Test):
class AutotuneSession(object):
def __init__(self, events):
self.events = events
@property
def linestart(self):
return self.events[0][0]
@property
def linestop(self):
return self.events[-1][0]
@property
def success(self):
return AUTOTUNE_SUCCESS in [i for _,i in self.events]
return AUTOTUNE_SUCCESS in [i for _, i in self.events]
@property
def failure(self):
return AUTOTUNE_FAILED in [i for _,i in self.events]
return AUTOTUNE_FAILED in [i for _, i in self.events]
@property
def limit(self):
return AUTOTUNE_REACHED_LIMIT in [i for _,i in self.events]
return AUTOTUNE_REACHED_LIMIT in [i for _, i in self.events]
def __repr__(self):
return "<AutotuneSession {}-{}>".format(self.linestart,self.linestop)
return "<AutotuneSession {}-{}>".format(self.linestart, self.linestop)
def __init__(self):
Test.__init__(self)
@ -59,7 +68,7 @@ class TestAutotune(Test):
self.result.status = TestResult.StatusType.NA
return
for i in ['EV','ATDE','ATUN']:
for i in ['EV', 'ATDE', 'ATUN']:
r = False
if not i in logdata.channels:
self.result.status = TestResult.StatusType.UNKNOWN
@ -72,8 +81,8 @@ class TestAutotune(Test):
attempts = []
j = None
for i in range(0,len(events)):
line,ev = events[i]
for i in range(0, len(events)):
line, ev = events[i]
if ev == AUTOTUNE_INITIALISED:
if j is not None:
attempts.append(TestAutotune.AutotuneSession(events[j:i]))
@ -86,12 +95,8 @@ class TestAutotune(Test):
for a in attempts:
# this should not be necessary!
def class_from_channel(c):
members = dict({'__init__':lambda x: setattr(x,i,None) for i in logdata.channels[c]})
cls = type(\
'Channel__{:s}'.format(c),
(object,),
members
)
members = dict({'__init__': lambda x: setattr(x, i, None) for i in logdata.channels[c]})
cls = type('Channel__{:s}'.format(c), (object,), members)
return cls
# last wins
@ -105,7 +110,7 @@ class TestAutotune(Test):
self.result.status = TestResult.StatusType.UNKNOWN
s = "[?]"
s += " Autotune {}-{}\n".format(a.linestart,a.linestop)
s += " Autotune {}-{}\n".format(a.linestart, a.linestop)
self.result.statusMessage += s
if verbose:
@ -121,6 +126,7 @@ class TestAutotune(Test):
for key in logdata.channels['ATUN']:
setattr(atun, key, logdata.channels['ATUN'][key].getNearestValueFwd(linenext)[0])
linenext = logdata.channels['ATUN'][key].getNearestValueFwd(linenext)[1] + 1
self.result.statusMessage += 'ATUN Axis:{atun.Axis} TuneStep:{atun.TuneStep} RateMin:{atun.RateMin:5.0f} RateMax:{atun.RateMax:5.0f} RPGain:{atun.RPGain:1.4f} RDGain:{atun.RDGain:1.4f} SPGain:{atun.SPGain:1.1f} (@line:{l})\n'.format(l=linenext,s=s, atun=atun)
self.result.statusMessage += 'ATUN Axis:{atun.Axis} TuneStep:{atun.TuneStep} RateMin:{atun.RateMin:5.0f} RateMax:{atun.RateMax:5.0f} RPGain:{atun.RPGain:1.4f} RDGain:{atun.RDGain:1.4f} SPGain:{atun.SPGain:1.1f} (@line:{l})\n'.format(
l=linenext, s=s, atun=atun
)
self.result.statusMessage += '\n'

View File

@ -1,8 +1,9 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
import collections
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestBrownout(Test):
'''test for a log that has been truncated in flight'''
@ -19,7 +20,7 @@ class TestBrownout(Test):
if "EV" in logdata.channels:
# step through the arm/disarm events in order, to see if they're symmetrical
# note: it seems landing detection isn't robust enough to rely upon here, so we'll only consider arm+disarm, not takeoff+land
for line,ev in logdata.channels["EV"]["Id"].listData:
for line, ev in logdata.channels["EV"]["Id"].listData:
if ev == 10:
isArmed = True
elif ev == 11:
@ -36,7 +37,9 @@ class TestBrownout(Test):
self.ctun_baralt_att = 'BAlt'
# check for relative altitude at end
(finalAlt,finalAltLine) = logdata.channels["CTUN"][self.ctun_baralt_att].getNearestValue(logdata.lineCount, lookForwards=False)
(finalAlt, finalAltLine) = logdata.channels["CTUN"][self.ctun_baralt_att].getNearestValue(
logdata.lineCount, lookForwards=False
)
finalAltMax = 3.0 # max alt offset that we'll still consider to be on the ground
if isArmed and finalAlt > finalAltMax:

View File

@ -1,8 +1,8 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from functools import reduce
import math
from functools import reduce
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestCompass(Test):
@ -17,7 +17,7 @@ class TestCompass(Test):
self.result.status = TestResult.StatusType.GOOD
def vec_len(x):
return math.sqrt(x[0]**2+x[1]**2+x[2]**2)
return math.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2)
def FAIL():
self.result.status = TestResult.StatusType.FAIL
@ -32,30 +32,46 @@ class TestCompass(Test):
param_offsets = (
logdata.parameters["COMPASS_OFS_X"],
logdata.parameters["COMPASS_OFS_Y"],
logdata.parameters["COMPASS_OFS_Z"]
logdata.parameters["COMPASS_OFS_Z"],
)
if vec_len(param_offsets) > failOffset:
FAIL()
self.result.statusMessage = "FAIL: Large compass offset params (X:%.2f, Y:%.2f, Z:%.2f)\n" % (param_offsets[0],param_offsets[1],param_offsets[2])
self.result.statusMessage = "FAIL: Large compass offset params (X:%.2f, Y:%.2f, Z:%.2f)\n" % (
param_offsets[0],
param_offsets[1],
param_offsets[2],
)
elif vec_len(param_offsets) > warnOffset:
WARN()
self.result.statusMessage = "WARN: Large compass offset params (X:%.2f, Y:%.2f, Z:%.2f)\n" % (param_offsets[0],param_offsets[1],param_offsets[2])
self.result.statusMessage = "WARN: Large compass offset params (X:%.2f, Y:%.2f, Z:%.2f)\n" % (
param_offsets[0],
param_offsets[1],
param_offsets[2],
)
if "MAG" in logdata.channels:
max_log_offsets = zip(
map(lambda x: x[1],logdata.channels["MAG"]["OfsX"].listData),
map(lambda x: x[1],logdata.channels["MAG"]["OfsY"].listData),
map(lambda x: x[1],logdata.channels["MAG"]["OfsZ"].listData)
map(lambda x: x[1], logdata.channels["MAG"]["OfsX"].listData),
map(lambda x: x[1], logdata.channels["MAG"]["OfsY"].listData),
map(lambda x: x[1], logdata.channels["MAG"]["OfsZ"].listData),
)
max_log_offsets = reduce(lambda x,y: x if vec_len(x) > vec_len(y) else y, max_log_offsets)
max_log_offsets = reduce(lambda x, y: x if vec_len(x) > vec_len(y) else y, max_log_offsets)
if vec_len(max_log_offsets) > failOffset:
FAIL()
self.result.statusMessage += "FAIL: Large compass offset in MAG data (X:%.2f, Y:%.2f, Z:%.2f)\n" % (max_log_offsets[0],max_log_offsets[1],max_log_offsets[2])
self.result.statusMessage += "FAIL: Large compass offset in MAG data (X:%.2f, Y:%.2f, Z:%.2f)\n" % (
max_log_offsets[0],
max_log_offsets[1],
max_log_offsets[2],
)
elif vec_len(max_log_offsets) > warnOffset:
WARN()
self.result.statusMessage += "WARN: Large compass offset in MAG data (X:%.2f, Y:%.2f, Z:%.2f)\n" % (max_log_offsets[0],max_log_offsets[1],max_log_offsets[2])
self.result.statusMessage += "WARN: Large compass offset in MAG data (X:%.2f, Y:%.2f, Z:%.2f)\n" % (
max_log_offsets[0],
max_log_offsets[1],
max_log_offsets[2],
)
# check for mag field length change, and length outside of recommended range
if "MAG" in logdata.channels:
@ -66,54 +82,77 @@ class TestCompass(Test):
index = 0
length = len(logdata.channels["MAG"]["MagX"].listData)
magField = []
(minMagField, maxMagField) = (None,None)
(minMagFieldLine, maxMagFieldLine) = (None,None)
(minMagField, maxMagField) = (None, None)
(minMagFieldLine, maxMagFieldLine) = (None, None)
zerosFound = False
while index<length:
while index < length:
mx = logdata.channels["MAG"]["MagX"].listData[index][1]
my = logdata.channels["MAG"]["MagY"].listData[index][1]
mz = logdata.channels["MAG"]["MagZ"].listData[index][1]
if ((mx==0) and (my==0) and (mz==0)): # sometimes they're zero, not sure why, same reason as why we get NaNs as offsets?
if (
(mx == 0) and (my == 0) and (mz == 0)
): # sometimes they're zero, not sure why, same reason as why we get NaNs as offsets?
zerosFound = True
else:
mf = math.sqrt(mx*mx + my*my + mz*mz)
mf = math.sqrt(mx * mx + my * my + mz * mz)
magField.append(mf)
if mf<minMagField:
if mf < minMagField:
minMagField = mf
minMagFieldLine = logdata.channels["MAG"]["MagX"].listData[index][0]
if mf>maxMagField:
if mf > maxMagField:
maxMagField = mf
maxMagFieldLine = logdata.channels["MAG"]["MagX"].listData[index][0]
if index == 0:
(minMagField, maxMagField) = (mf,mf)
(minMagField, maxMagField) = (mf, mf)
index += 1
if minMagField is None:
FAIL()
self.result.statusMessage = self.result.statusMessage + "No valid mag data found\n"
else:
percentDiff = (maxMagField-minMagField) / minMagField
percentDiff = (maxMagField - minMagField) / minMagField
if percentDiff > percentDiffThresholdFAIL:
FAIL()
self.result.statusMessage = self.result.statusMessage + "Large change in mag_field (%.2f%%)\n" % (percentDiff*100)
self.result.statusMessage = (
self.result.statusMessage + "Large change in mag_field (%.2f%%)\n" % (percentDiff * 100)
)
elif percentDiff > percentDiffThresholdWARN:
WARN()
self.result.statusMessage = self.result.statusMessage + "Moderate change in mag_field (%.2f%%)\n" % (percentDiff*100)
self.result.statusMessage = (
self.result.statusMessage + "Moderate change in mag_field (%.2f%%)\n" % (percentDiff * 100)
)
else:
self.result.statusMessage = self.result.statusMessage + "mag_field interference within limits (%.2f%%)\n" % (percentDiff*100)
self.result.statusMessage = (
self.result.statusMessage
+ "mag_field interference within limits (%.2f%%)\n" % (percentDiff * 100)
)
if minMagField < minMagFieldThreshold:
self.result.statusMessage = self.result.statusMessage + "Min mag field length (%.2f) < recommended (%.2f)\n" % (minMagField,minMagFieldThreshold)
self.result.statusMessage = (
self.result.statusMessage
+ "Min mag field length (%.2f) < recommended (%.2f)\n" % (minMagField, minMagFieldThreshold)
)
if maxMagField > maxMagFieldThreshold:
self.result.statusMessage = self.result.statusMessage + "Max mag field length (%.2f) > recommended (%.2f)\n" % (maxMagField,maxMagFieldThreshold)
self.result.statusMessage = (
self.result.statusMessage
+ "Max mag field length (%.2f) > recommended (%.2f)\n" % (maxMagField, maxMagFieldThreshold)
)
if verbose:
self.result.statusMessage = self.result.statusMessage + "Min mag_field of %.2f on line %d\n" % (minMagField,minMagFieldLine)
self.result.statusMessage = self.result.statusMessage + "Max mag_field of %.2f on line %d\n" % (maxMagField,maxMagFieldLine)
self.result.statusMessage = self.result.statusMessage + "Min mag_field of %.2f on line %d\n" % (
minMagField,
minMagFieldLine,
)
self.result.statusMessage = self.result.statusMessage + "Max mag_field of %.2f on line %d\n" % (
maxMagField,
maxMagFieldLine,
)
if zerosFound:
if self.result.status == TestResult.StatusType.GOOD:
WARN()
self.result.statusMessage = self.result.statusMessage + "All zeros found in MAG X/Y/Z log data\n"
else:
self.result.statusMessage = self.result.statusMessage + "No MAG data, unable to test mag_field interference\n"
self.result.statusMessage = (
self.result.statusMessage + "No MAG data, unable to test mag_field interference\n"
)
except KeyError as e:
self.result.status = TestResult.StatusType.FAIL

View File

@ -1,7 +1,7 @@
from __future__ import print_function
from LogAnalyzer import Test,TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
# import scipy
# import pylab #### TEMP!!! only for dev
@ -88,7 +88,6 @@ class TestDualGyroDrift(Test):
# # imu2XFiltered = scipy.signal.filtfilt(b,a,zip(*imu2X)[1])
# #pylab.plot(imuXFiltered, 'r')
# # TMP: DISPLAY BEFORE+AFTER plots
# pylab.show()
@ -109,13 +108,3 @@ class TestDualGyroDrift(Test):
# avgRatioZ = abs(max(avg1Z,avg2Z) / min(avg1Z,avg2Z))
# self.result.statusMessage = "IMU gyro avg: %.4f,%.4f,%.4f\nIMU2 gyro avg: %.4f,%.4f,%.4f\nAvg ratio: %.4f,%.4f,%.4f" % (avg1X,avg1Y,avg1Z, avg2X,avg2Y,avg2Z, avgRatioX,avgRatioY,avgRatioZ)

View File

@ -1,7 +1,7 @@
from __future__ import print_function
from LogAnalyzer import Test,TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestDupeLogData(Test):
@ -25,12 +25,12 @@ class TestDupeLogData(Test):
# c
data = logdata.channels["ATT"]["Pitch"].listData
for i in range(sampleStartIndex, len(data)):
#print("Checking against index %d" % i)
# print("Checking against index %d" % i)
if i == sampleStartIndex:
continue # skip matching against ourselves
j = 0
while j<20 and (i+j)<len(data) and data[i+j][1] == sample[j][1]:
#print("### Match found, j=%d, data=%f, sample=%f, log data matched to sample at line %d" % (j,data[i+j][1],sample[j][1],data[i+j][0]))
while j < 20 and (i + j) < len(data) and data[i + j][1] == sample[j][1]:
# print("### Match found, j=%d, data=%f, sample=%f, log data matched to sample at line %d" % (j,data[i+j][1],sample[j][1],data[i+j][0]))
j += 1
if j == 20: # all samples match
return data[i][0]
@ -50,30 +50,27 @@ class TestDupeLogData(Test):
# pick 10 sample points within the range of ATT data we have
sampleStartIndices = []
attStartIndex = 0
attEndIndex = len(logdata.channels["ATT"]["Pitch"].listData)-1
attEndIndex = len(logdata.channels["ATT"]["Pitch"].listData) - 1
step = int(attEndIndex / 11)
for i in range(step,attEndIndex-step,step):
for i in range(step, attEndIndex - step, step):
sampleStartIndices.append(i)
#print("Dupe data sample point index %d at line %d" % (i, logdata.channels["ATT"]["Pitch"].listData[i][0]))
# print("Dupe data sample point index %d at line %d" % (i, logdata.channels["ATT"]["Pitch"].listData[i][0]))
# get 20 datapoints of pitch from each sample location and check for a match elsewhere
sampleIndex = 0
for i in range(sampleStartIndices[0], len(logdata.channels["ATT"]["Pitch"].listData)):
if i == sampleStartIndices[sampleIndex]:
#print("Checking sample %d" % i)
sample = logdata.channels["ATT"]["Pitch"].listData[i:i+20]
# print("Checking sample %d" % i)
sample = logdata.channels["ATT"]["Pitch"].listData[i : i + 20]
matchedLine = self.__matchSample(sample, i, logdata)
if matchedLine:
#print("Data from line %d found duplicated at line %d" % (sample[0][0],matchedLine))
# print("Data from line %d found duplicated at line %d" % (sample[0][0],matchedLine))
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "Duplicate data chunks found in log (%d and %d)" % (sample[0][0],matchedLine)
self.result.statusMessage = "Duplicate data chunks found in log (%d and %d)" % (
sample[0][0],
matchedLine,
)
return
sampleIndex += 1
if sampleIndex >= len(sampleStartIndices):
break

View File

@ -1,5 +1,5 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestEmpty(Test):

View File

@ -1,9 +1,10 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestEvents(Test):
'''test for erroneous events and failsafes'''
# TODO: need to check for vehicle-specific codes
def __init__(self):
@ -17,7 +18,7 @@ class TestEvents(Test):
errors = set()
if "ERR" in logdata.channels:
assert(len(logdata.channels["ERR"]["Subsys"].listData) == len(logdata.channels["ERR"]["ECode"].listData))
assert len(logdata.channels["ERR"]["Subsys"].listData) == len(logdata.channels["ERR"]["ECode"].listData)
for i in range(len(logdata.channels["ERR"]["Subsys"].listData)):
subSys = logdata.channels["ERR"]["Subsys"].listData[i][1]
eCode = logdata.channels["ERR"]["ECode"].listData[i][1]
@ -53,4 +54,3 @@ class TestEvents(Test):
self.result.statusMessage = "ERRs found: "
for err in errors:
self.result.statusMessage = self.result.statusMessage + err + " "

View File

@ -32,8 +32,7 @@ class TestGPSGlitch(Test):
# leaving the test in for all
gpsGlitchCount = 0
if "ERR" in logdata.channels:
assert(len(logdata.channels["ERR"]["Subsys"].listData) ==
len(logdata.channels["ERR"]["ECode"].listData))
assert len(logdata.channels["ERR"]["Subsys"].listData) == len(logdata.channels["ERR"]["ECode"].listData)
for i in range(len(logdata.channels["ERR"]["Subsys"].listData)):
subSys = logdata.channels["ERR"]["Subsys"].listData[i][1]
eCode = logdata.channels["ERR"]["ECode"].listData[i][1]
@ -41,8 +40,7 @@ class TestGPSGlitch(Test):
gpsGlitchCount += 1
if gpsGlitchCount:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = ("GPS glitch errors found (%d)" %
gpsGlitchCount)
self.result.statusMessage = "GPS glitch errors found (%d)" % gpsGlitchCount
# define and check different thresholds for WARN level and
# FAIL level
@ -58,11 +56,9 @@ class TestGPSGlitch(Test):
foundBadHDopWarn = hdopChan.max() > maxHDopWARN
foundBadSatsFail = satsChan.min() < minSatsFAIL
foundBadHDopFail = hdopChan.max() > maxHDopFAIL
satsMsg = ("Min satellites: %s, Max HDop: %s" %
(satsChan.min(), hdopChan.max()))
satsMsg = "Min satellites: %s, Max HDop: %s" % (satsChan.min(), hdopChan.max())
if gpsGlitchCount:
self.result.statusMessage = "\n".join([self.result.statusMessage,
satsMsg])
self.result.statusMessage = "\n".join([self.result.statusMessage, satsMsg])
if foundBadSatsFail or foundBadHDopFail:
if not gpsGlitchCount:
self.result.status = TestResult.StatusType.FAIL

View File

@ -1,9 +1,10 @@
from __future__ import print_function
from LogAnalyzer import Test,TestResult
import DataflashLog
from math import sqrt
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestIMUMatch(Test):
'''test for empty or near-empty logs'''
@ -14,8 +15,8 @@ class TestIMUMatch(Test):
def run(self, logdata, verbose):
#tuning parameters:
warn_threshold = .75
# tuning parameters:
warn_threshold = 0.75
fail_threshold = 1.5
filter_tc = 5.0
@ -36,7 +37,7 @@ class TestIMUMatch(Test):
imu2 = logdata.channels["IMU2"]
timeLabel = None
for i in 'TimeMS','TimeUS','Time':
for i in 'TimeMS', 'TimeUS', 'Time':
if i in logdata.channels["GPS"]:
timeLabel = i
break
@ -50,18 +51,32 @@ class TestIMUMatch(Test):
imu2_accy = imu2["AccY"].listData
imu2_accz = imu2["AccZ"].listData
imu_multiplier = 1.0E-3
imu_multiplier = 1.0e-3
if timeLabel == 'TimeUS':
imu_multiplier = 1.0E-6
imu_multiplier = 1.0e-6
imu1 = []
imu2 = []
for i in range(len(imu1_timems)):
imu1.append({ 't': imu1_timems[i][1]*imu_multiplier, 'x': imu1_accx[i][1], 'y': imu1_accy[i][1], 'z': imu1_accz[i][1]})
imu1.append(
{
't': imu1_timems[i][1] * imu_multiplier,
'x': imu1_accx[i][1],
'y': imu1_accy[i][1],
'z': imu1_accz[i][1],
}
)
for i in range(len(imu2_timems)):
imu2.append({ 't': imu2_timems[i][1]*imu_multiplier, 'x': imu2_accx[i][1], 'y': imu2_accy[i][1], 'z': imu2_accz[i][1]})
imu2.append(
{
't': imu2_timems[i][1] * imu_multiplier,
'x': imu2_accx[i][1],
'y': imu2_accy[i][1],
'z': imu2_accz[i][1],
}
)
imu1.sort(key=lambda x: x['t'])
imu2.sort(key=lambda x: x['t'])
@ -76,40 +91,48 @@ class TestIMUMatch(Test):
max_diff_filtered = 0
for i in range(len(imu1)):
#find closest imu2 value
# find closest imu2 value
t = imu1[i]['t']
dt = 0 if last_t is None else t-last_t
dt=min(dt,.1)
dt = 0 if last_t is None else t - last_t
dt = min(dt, 0.1)
next_imu2 = None
for i in range(imu2_index,len(imu2)):
for i in range(imu2_index, len(imu2)):
next_imu2 = imu2[i]
imu2_index=i
imu2_index = i
if next_imu2['t'] >= t:
break
prev_imu2 = imu2[imu2_index-1]
closest_imu2 = next_imu2 if abs(next_imu2['t']-t)<abs(prev_imu2['t']-t) else prev_imu2
prev_imu2 = imu2[imu2_index - 1]
closest_imu2 = next_imu2 if abs(next_imu2['t'] - t) < abs(prev_imu2['t'] - t) else prev_imu2
xdiff = imu1[i]['x']-closest_imu2['x']
ydiff = imu1[i]['y']-closest_imu2['y']
zdiff = imu1[i]['z']-closest_imu2['z']
xdiff = imu1[i]['x'] - closest_imu2['x']
ydiff = imu1[i]['y'] - closest_imu2['y']
zdiff = imu1[i]['z'] - closest_imu2['z']
xdiff_filtered += (xdiff-xdiff_filtered)*dt/filter_tc
ydiff_filtered += (ydiff-ydiff_filtered)*dt/filter_tc
zdiff_filtered += (zdiff-zdiff_filtered)*dt/filter_tc
xdiff_filtered += (xdiff - xdiff_filtered) * dt / filter_tc
ydiff_filtered += (ydiff - ydiff_filtered) * dt / filter_tc
zdiff_filtered += (zdiff - zdiff_filtered) * dt / filter_tc
diff_filtered = sqrt(xdiff_filtered**2+ydiff_filtered**2+zdiff_filtered**2)
max_diff_filtered = max(max_diff_filtered,diff_filtered)
#print(max_diff_filtered)
diff_filtered = sqrt(xdiff_filtered**2 + ydiff_filtered**2 + zdiff_filtered**2)
max_diff_filtered = max(max_diff_filtered, diff_filtered)
# print(max_diff_filtered)
last_t = t
if max_diff_filtered > fail_threshold:
self.result.statusMessage = "Check vibration or accelerometer calibration. (Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)" % (max_diff_filtered,warn_threshold,fail_threshold)
self.result.statusMessage = (
"Check vibration or accelerometer calibration. (Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)"
% (max_diff_filtered, warn_threshold, fail_threshold)
)
self.result.status = TestResult.StatusType.FAIL
elif max_diff_filtered > warn_threshold:
self.result.statusMessage = "Check vibration or accelerometer calibration. (Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)" % (max_diff_filtered,warn_threshold,fail_threshold)
self.result.statusMessage = (
"Check vibration or accelerometer calibration. (Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)"
% (max_diff_filtered, warn_threshold, fail_threshold)
)
self.result.status = TestResult.StatusType.WARN
else:
self.result.statusMessage = "(Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)" % (max_diff_filtered,warn_threshold, fail_threshold)
self.result.statusMessage = "(Mismatch: %.2f, WARN: %.2f, FAIL: %.2f)" % (
max_diff_filtered,
warn_threshold,
fail_threshold,
)

View File

@ -1,10 +1,11 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
class TestBalanceTwist(Test):
'''test for badly unbalanced copter, including yaw twist'''
def __init__(self):
Test.__init__(self)
self.name = "Motor Balance"
@ -25,14 +26,14 @@ class TestBalanceTwist(Test):
for i in range(8):
for prefix in "Chan", "Ch", "C":
if prefix+repr((i+1)) in logdata.channels["RCOU"]:
ch.append(map(lambda x: x[1], logdata.channels["RCOU"][prefix+repr((i+1))].listData))
if prefix + repr((i + 1)) in logdata.channels["RCOU"]:
ch.append(map(lambda x: x[1], logdata.channels["RCOU"][prefix + repr((i + 1))].listData))
ch = zip(*ch)
num_channels = 0
ch = list(ch)
for i in range(len(ch)):
ch[i] = list(filter(lambda x: (x>0 and x<3000), ch[i]))
ch[i] = list(filter(lambda x: (x > 0 and x < 3000), ch[i]))
if num_channels < len(ch[i]):
num_channels = len(ch[i])
@ -43,11 +44,20 @@ class TestBalanceTwist(Test):
return
try:
min_throttle = logdata.parameters["RC3_MIN"] + logdata.parameters["THR_MIN"] / (logdata.parameters["RC3_MAX"]-logdata.parameters["RC3_MIN"])/1000.0
min_throttle = (
logdata.parameters["RC3_MIN"]
+ logdata.parameters["THR_MIN"]
/ (logdata.parameters["RC3_MAX"] - logdata.parameters["RC3_MIN"])
/ 1000.0
)
except KeyError as e:
min_throttle = logdata.parameters["MOT_PWM_MIN"] / (logdata.parameters["MOT_PWM_MAX"]-logdata.parameters["RC3_MIN"])/1000.0
min_throttle = (
logdata.parameters["MOT_PWM_MIN"]
/ (logdata.parameters["MOT_PWM_MAX"] - logdata.parameters["RC3_MIN"])
/ 1000.0
)
ch = list(filter(lambda x:sum(x)/num_channels > min_throttle, ch))
ch = list(filter(lambda x: sum(x) / num_channels > min_throttle, ch))
if len(ch) == 0:
return
@ -55,17 +65,20 @@ class TestBalanceTwist(Test):
avg_sum = 0
avg_ch = []
for i in range(num_channels):
avg = list(map(lambda x: x[i],ch))
avg = sum(avg)/len(avg)
avg = list(map(lambda x: x[i], ch))
avg = sum(avg) / len(avg)
avg_ch.append(avg)
avg_sum += avg
avg_all = avg_sum / num_channels
self.result.statusMessage = "Motor channel averages = %s\nAverage motor output = %.0f\nDifference between min and max motor averages = %.0f" % (str(avg_ch),avg_all,abs(min(avg_ch)-max(avg_ch)))
self.result.statusMessage = (
"Motor channel averages = %s\nAverage motor output = %.0f\nDifference between min and max motor averages = %.0f"
% (str(avg_ch), avg_all, abs(min(avg_ch) - max(avg_ch)))
)
self.result.status = TestResult.StatusType.GOOD
if abs(min(avg_ch)-max(avg_ch)) > 75:
if abs(min(avg_ch) - max(avg_ch)) > 75:
self.result.status = TestResult.StatusType.WARN
if abs(min(avg_ch)-max(avg_ch)) > 150:
if abs(min(avg_ch) - max(avg_ch)) > 150:
self.result.status = TestResult.StatusType.FAIL

View File

@ -1,6 +1,8 @@
from LogAnalyzer import Test,TestResult
import math
from LogAnalyzer import Test, TestResult
class TestNaN(Test):
'''test for NaNs present in log'''
@ -16,8 +18,8 @@ class TestNaN(Test):
self.result.status = TestResult.StatusType.FAIL
nans_ok = {
"CTUN": [ "DSAlt", "TAlt" ],
"POS": [ "RelOriginAlt"],
"CTUN": ["DSAlt", "TAlt"],
"POS": ["RelOriginAlt"],
}
for channel in logdata.channels.keys():
@ -29,7 +31,10 @@ class TestNaN(Test):
(ts, val) = tupe
if isinstance(val, float) and math.isnan(val):
FAIL()
self.result.statusMessage += "Found NaN in %s.%s\n" % (channel, field,)
self.result.statusMessage += "Found NaN in %s.%s\n" % (
channel,
field,
)
raise ValueError()
except ValueError as e:
continue

View File

@ -1,12 +1,14 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from math import sqrt
import numpy as np
import DataflashLog
import matplotlib.pyplot as plt
import numpy as np
from LogAnalyzer import Test, TestResult
class TestFlow(Test):
'''test optical flow sensor scale factor calibration'''
#
# Use the following procedure to log the calibration data. is assumed that the optical flow sensor has been
# correctly aligned, is focussed and the test is performed over a textured surface with adequate lighting.
@ -44,8 +46,12 @@ class TestFlow(Test):
# tuning parameters used by the algorithm
tilt_threshold = 15 # roll and pitch threshold used to start and stop calibration (deg)
quality_threshold = 124 # minimum flow quality required for data to be used by the curve fit (N/A)
min_rate_threshold = 0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec)
max_rate_threshold = 2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec)
min_rate_threshold = (
0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec)
)
max_rate_threshold = (
2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec)
)
param_std_threshold = 5.0 # maximum allowable 1-std uncertainty in scaling parameter (scale factor * 1000)
param_abs_threshold = 200 # max/min allowable scale factor parameter. Values of FLOW_FXSCALER and FLOW_FYSCALER outside the range of +-param_abs_threshold indicate a sensor configuration problem.
min_num_points = 100 # minimum number of points required for a curve fit - this is necessary, but not sufficient condition - the standard deviation estimate of the fit gradient is also important.
@ -119,17 +125,17 @@ class TestFlow(Test):
# calculate the end time for the roll calibration
endTime = int(0)
endRollIndex = int(0)
for i in range(len(Roll)-1,-1,-1):
for i in range(len(Roll) - 1, -1, -1):
if abs(Roll[i]) > tilt_threshold:
endTime = att_time_us[i]
break
for i in range(len(flow_time_us)-1,-1,-1):
for i in range(len(flow_time_us) - 1, -1, -1):
if flow_time_us[i] < endTime:
endRollIndex = i
break
# check we have enough roll data points
if (endRollIndex - startRollIndex <= min_num_points):
if endRollIndex - startRollIndex <= min_num_points:
FAIL()
self.result.statusMessage = "FAIL: insufficient roll data pointsa\n"
return
@ -140,7 +146,13 @@ class TestFlow(Test):
bodyX_resampled = []
flowX_time_us_resampled = []
for i in range(len(Roll)):
if (i >= startRollIndex) and (i <= endRollIndex) and (abs(bodyX[i]) > min_rate_threshold) and (abs(bodyX[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold):
if (
(i >= startRollIndex)
and (i <= endRollIndex)
and (abs(bodyX[i]) > min_rate_threshold)
and (abs(bodyX[i]) < max_rate_threshold)
and (flow_qual[i] > quality_threshold)
):
flowX_resampled.append(flowX[i])
bodyX_resampled.append(bodyX[i])
flowX_time_us_resampled.append(flow_time_us[i])
@ -160,17 +172,17 @@ class TestFlow(Test):
# calculate the end time for the pitch calibration
endTime = 0
endPitchIndex = int(0)
for i in range(len(Pitch)-1,-1,-1):
for i in range(len(Pitch) - 1, -1, -1):
if abs(Pitch[i]) > tilt_threshold:
endTime = att_time_us[i]
break
for i in range(len(flow_time_us)-1,-1,-1):
for i in range(len(flow_time_us) - 1, -1, -1):
if flow_time_us[i] < endTime:
endPitchIndex = i
break
# check we have enough pitch data points
if (endPitchIndex - startPitchIndex <= min_num_points):
if endPitchIndex - startPitchIndex <= min_num_points:
FAIL()
self.result.statusMessage = "FAIL: insufficient pitch data pointsa\n"
return
@ -181,34 +193,58 @@ class TestFlow(Test):
bodyY_resampled = []
flowY_time_us_resampled = []
for i in range(len(Roll)):
if (i >= startPitchIndex) and (i <= endPitchIndex) and (abs(bodyY[i]) > min_rate_threshold) and (abs(bodyY[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold):
if (
(i >= startPitchIndex)
and (i <= endPitchIndex)
and (abs(bodyY[i]) > min_rate_threshold)
and (abs(bodyY[i]) < max_rate_threshold)
and (flow_qual[i] > quality_threshold)
):
flowY_resampled.append(flowY[i])
bodyY_resampled.append(bodyY[i])
flowY_time_us_resampled.append(flow_time_us[i])
# fit a straight line to the flow vs body rate data and calculate the scale factor parameter required to achieve a slope of 1
coef_flow_x , cov_x = np.polyfit(bodyX_resampled,flowX_resampled,1,rcond=None, full=False, w=None, cov=True)
coef_flow_y , cov_y = np.polyfit(bodyY_resampled,flowY_resampled,1,rcond=None, full=False, w=None, cov=True)
coef_flow_x, cov_x = np.polyfit(
bodyX_resampled, flowX_resampled, 1, rcond=None, full=False, w=None, cov=True
)
coef_flow_y, cov_y = np.polyfit(
bodyY_resampled, flowY_resampled, 1, rcond=None, full=False, w=None, cov=True
)
# taking the exisiting scale factor parameters into account, calculate the parameter values reequired to achieve a unity slope
flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler))/coef_flow_x[0] - 1)))
flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler))/coef_flow_y[0] - 1)))
flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler)) / coef_flow_x[0] - 1)))
flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler)) / coef_flow_y[0] - 1)))
# Do a sanity check on the scale factor variance
if sqrt(cov_x[0][0]) > param_std_threshold or sqrt(cov_y[0][0]) > param_std_threshold:
FAIL()
self.result.statusMessage = "FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0])))
self.result.statusMessage = (
"FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n"
% (round(1000 * sqrt(cov_x[0][0])), round(1000 * sqrt(cov_y[0][0])))
)
# Do a sanity check on the scale factors
if abs(flow_fxscaler_new) > param_abs_threshold or abs(flow_fyscaler_new) > param_abs_threshold:
FAIL()
self.result.statusMessage = "FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n" % (flow_fxscaler,flow_fyscaler)
self.result.statusMessage = (
"FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n"
% (flow_fxscaler, flow_fyscaler)
)
# display recommended scale factors
self.result.statusMessage = "Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (flow_fxscaler_new,flow_fyscaler_new,round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0])))
self.result.statusMessage = (
"Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n"
% (
flow_fxscaler_new,
flow_fyscaler_new,
round(1000 * sqrt(cov_x[0][0])),
round(1000 * sqrt(cov_y[0][0])),
)
)
# calculate fit display data
body_rate_display = [-max_rate_threshold,max_rate_threshold]
body_rate_display = [-max_rate_threshold, max_rate_threshold]
fit_coef_x = np.poly1d(coef_flow_x)
flowX_display = fit_coef_x(body_rate_display)
fit_coef_y = np.poly1d(coef_flow_y)
@ -216,13 +252,14 @@ class TestFlow(Test):
# plot and save calibration test points to PDF
from matplotlib.backends.backend_pdf import PdfPages
output_plot_filename = "flow_calibration.pdf"
pp = PdfPages(output_plot_filename)
plt.figure(1,figsize=(20,13))
plt.subplot(2,1,1)
plt.plot(bodyX_resampled,flowX_resampled,'b', linestyle=' ', marker='o',label="test points")
plt.plot(body_rate_display,flowX_display,'r',linewidth=2.5,label="linear fit")
plt.figure(1, figsize=(20, 13))
plt.subplot(2, 1, 1)
plt.plot(bodyX_resampled, flowX_resampled, 'b', linestyle=' ', marker='o', label="test points")
plt.plot(body_rate_display, flowX_display, 'r', linewidth=2.5, label="linear fit")
plt.title('X axis flow rate vs gyro rate')
plt.ylabel('flow rate (rad/s)')
plt.xlabel('gyro rate (rad/sec)')
@ -230,9 +267,9 @@ class TestFlow(Test):
plt.legend(loc='upper left')
# draw plots
plt.subplot(2,1,2)
plt.plot(bodyY_resampled,flowY_resampled,'b', linestyle=' ', marker='o',label="test points")
plt.plot(body_rate_display,flowY_display,'r',linewidth=2.5,label="linear fit")
plt.subplot(2, 1, 2)
plt.plot(bodyY_resampled, flowY_resampled, 'b', linestyle=' ', marker='o', label="test points")
plt.plot(body_rate_display, flowY_display, 'r', linewidth=2.5, label="linear fit")
plt.title('Y axis flow rate vs gyro rate')
plt.ylabel('flow rate (rad/s)')
plt.xlabel('gyro rate (rad/sec)')
@ -241,12 +278,12 @@ class TestFlow(Test):
pp.savefig()
plt.figure(2,figsize=(20,13))
plt.subplot(2,1,1)
plt.plot(flow_time_us,flowX,'b',label="flow rate - all")
plt.plot(flow_time_us,bodyX,'r',label="gyro rate - all")
plt.plot(flowX_time_us_resampled,flowX_resampled,'c', linestyle=' ', marker='o',label="flow rate - used")
plt.plot(flowX_time_us_resampled,bodyX_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used")
plt.figure(2, figsize=(20, 13))
plt.subplot(2, 1, 1)
plt.plot(flow_time_us, flowX, 'b', label="flow rate - all")
plt.plot(flow_time_us, bodyX, 'r', label="gyro rate - all")
plt.plot(flowX_time_us_resampled, flowX_resampled, 'c', linestyle=' ', marker='o', label="flow rate - used")
plt.plot(flowX_time_us_resampled, bodyX_resampled, 'm', linestyle=' ', marker='o', label="gyro rate - used")
plt.title('X axis flow and body rate vs time')
plt.ylabel('rate (rad/s)')
plt.xlabel('time (usec)')
@ -254,11 +291,11 @@ class TestFlow(Test):
plt.legend(loc='upper left')
# draw plots
plt.subplot(2,1,2)
plt.plot(flow_time_us,flowY,'b',label="flow rate - all")
plt.plot(flow_time_us,bodyY,'r',label="gyro rate - all")
plt.plot(flowY_time_us_resampled,flowY_resampled,'c', linestyle=' ', marker='o',label="flow rate - used")
plt.plot(flowY_time_us_resampled,bodyY_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used")
plt.subplot(2, 1, 2)
plt.plot(flow_time_us, flowY, 'b', label="flow rate - all")
plt.plot(flow_time_us, bodyY, 'r', label="gyro rate - all")
plt.plot(flowY_time_us_resampled, flowY_resampled, 'c', linestyle=' ', marker='o', label="flow rate - used")
plt.plot(flowY_time_us_resampled, bodyY_resampled, 'm', linestyle=' ', marker='o', label="gyro rate - used")
plt.title('Y axis flow and body rate vs time')
plt.ylabel('rate (rad/s)')
plt.xlabel('time (usec)')
@ -275,21 +312,11 @@ class TestFlow(Test):
# write correction parameters to file
test_results_filename = "flow_calibration.param"
file = open(test_results_filename,"w")
file.write("FLOW_FXSCALER"+" "+str(flow_fxscaler_new)+"\n")
file.write("FLOW_FYSCALER"+" "+str(flow_fyscaler_new)+"\n")
file = open(test_results_filename, "w")
file.write("FLOW_FXSCALER" + " " + str(flow_fxscaler_new) + "\n")
file.write("FLOW_FYSCALER" + " " + str(flow_fyscaler_new) + "\n")
file.close()
except KeyError as e:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = str(e) + ' not found'

View File

@ -1,9 +1,9 @@
from LogAnalyzer import Test, TestResult
import DataflashLog
from VehicleType import VehicleType
import math # for isnan()
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
class TestParams(Test):
'''test for any obviously bad parameters in the config'''
@ -12,31 +12,43 @@ class TestParams(Test):
Test.__init__(self)
self.name = "Parameters"
# helper functions
def __checkParamIsEqual(self, paramName, expectedValue, logdata):
value = logdata.parameters[paramName]
if value != expectedValue:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting %s\n" % (paramName, repr(value), repr(expectedValue))
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting %s\n" % (
paramName,
repr(value),
repr(expectedValue),
)
def __checkParamIsLessThan(self, paramName, maxValue, logdata):
value = logdata.parameters[paramName]
if value >= maxValue:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (paramName, repr(value), repr(maxValue))
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (
paramName,
repr(value),
repr(maxValue),
)
def __checkParamIsMoreThan(self, paramName, minValue, logdata):
value = logdata.parameters[paramName]
if value <= minValue:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (paramName, repr(value), repr(minValue))
self.result.statusMessage = self.result.statusMessage + "%s set to %s, expecting less than %s\n" % (
paramName,
repr(value),
repr(minValue),
)
def run(self, logdata, verbose):
self.result = TestResult()
self.result.status = TestResult.StatusType.GOOD # GOOD by default, tests below will override it if they fail
# check all params for NaN
for name,value in logdata.parameters.items():
for name, value in logdata.parameters.items():
if math.isnan(value):
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = self.result.statusMessage + name + " is NaN\n"
@ -45,7 +57,7 @@ class TestParams(Test):
# add parameter checks below using the helper functions, any failures will trigger a FAIL status and accumulate info in statusMessage
# if more complex checking or correlations are required you can access parameter values directly using the logdata.parameters[paramName] dict
if logdata.vehicleType == VehicleType.Copter:
self.__checkParamIsEqual ("MAG_ENABLE", 1, logdata)
self.__checkParamIsEqual("MAG_ENABLE", 1, logdata)
if "THR_MIN" in logdata.parameters:
self.__checkParamIsLessThan("THR_MIN", 200, logdata)
self.__checkParamIsLessThan("THR_MID", 701, logdata)

View File

@ -1,9 +1,10 @@
from __future__ import print_function
from LogAnalyzer import Test, TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
class TestPerformance(Test):
'''check performance monitoring messages (PM) for issues with slow loops, etc'''
@ -54,13 +55,19 @@ class TestPerformance(Test):
if percentSlow > maxPercentSlow:
maxPercentSlow = percentSlow
maxPercentSlowLine = line
#if (maxT > 13000) and line not in ignoreMaxTLines:
# if (maxT > 13000) and line not in ignoreMaxTLines:
# print("MaxT of %d detected on line %d" % (maxT,line))
if (maxPercentSlow > 10) or (slowLoopLineCount > 6):
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "%d slow loop lines found, max %.2f%% on line %d" % (slowLoopLineCount,maxPercentSlow,maxPercentSlowLine)
elif (maxPercentSlow > 6):
self.result.statusMessage = "%d slow loop lines found, max %.2f%% on line %d" % (
slowLoopLineCount,
maxPercentSlow,
maxPercentSlowLine,
)
elif maxPercentSlow > 6:
self.result.status = TestResult.StatusType.WARN
self.result.statusMessage = "%d slow loop lines found, max %.2f%% on line %d" % (slowLoopLineCount,maxPercentSlow,maxPercentSlowLine)
self.result.statusMessage = "%d slow loop lines found, max %.2f%% on line %d" % (
slowLoopLineCount,
maxPercentSlow,
maxPercentSlowLine,
)

View File

@ -1,12 +1,13 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
from VehicleType import VehicleType
import collections
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
class TestPitchRollCoupling(Test):
'''test for divergence between input and output pitch/roll, i.e. mechanical failure or bad PID tuning'''
# TODO: currently we're only checking for roll/pitch outside of max lean angle, will come back later to analyze roll/pitch in versus out values
def __init__(self):
@ -38,7 +39,8 @@ class TestPitchRollCoupling(Test):
self.ctun_baralt_att = 'BAlt'
# figure out where each mode begins and ends, so we can treat auto and manual modes differently and ignore acro/tune modes
autoModes = ["RTL",
autoModes = [
"RTL",
"AUTO",
"LAND",
"LOITER",
@ -49,44 +51,52 @@ class TestPitchRollCoupling(Test):
"BRAKE",
"AVOID_ADSB",
"GUIDED_NOGPS",
"SMARTRTL"]
"SMARTRTL",
]
# use CTUN RollIn/DesRoll + PitchIn/DesPitch
manualModes = ["STABILIZE", "DRIFT", "ALTHOLD", "ALT_HOLD", "POSHOLD"]
# ignore data from these modes:
ignoreModes = ["ACRO", "SPORT", "FLIP", "AUTOTUNE","", "THROW",]
ignoreModes = [
"ACRO",
"SPORT",
"FLIP",
"AUTOTUNE",
"",
"THROW",
]
autoSegments = [] # list of (startLine,endLine) pairs
manualSegments = [] # list of (startLine,endLine) pairs
orderedModes = collections.OrderedDict(sorted(logdata.modeChanges.items(), key=lambda t: t[0]))
isAuto = False # we always start in a manual control mode
prevLine = 0
mode = ""
for line,modepair in orderedModes.items():
for line, modepair in orderedModes.items():
mode = modepair[0].upper()
if prevLine == 0:
prevLine = line
if mode in autoModes:
if not isAuto:
manualSegments.append((prevLine,line-1))
manualSegments.append((prevLine, line - 1))
prevLine = line
isAuto = True
elif mode in manualModes:
if isAuto:
autoSegments.append((prevLine,line-1))
autoSegments.append((prevLine, line - 1))
prevLine = line
isAuto = False
elif mode in ignoreModes:
if isAuto:
autoSegments.append((prevLine,line-1))
autoSegments.append((prevLine, line - 1))
else:
manualSegments.append((prevLine,line-1))
manualSegments.append((prevLine, line - 1))
prevLine = 0
else:
raise Exception("Unknown mode in TestPitchRollCoupling: %s" % mode)
# and handle the last segment, which doesn't have an ending
if mode in autoModes:
autoSegments.append((prevLine,logdata.lineCount))
autoSegments.append((prevLine, logdata.lineCount))
elif mode in manualModes:
manualSegments.append((prevLine,logdata.lineCount))
manualSegments.append((prevLine, logdata.lineCount))
# figure out max lean angle, the ANGLE_MAX param was added in AC3.1
maxLeanAngle = 45.0
@ -101,41 +111,49 @@ class TestPitchRollCoupling(Test):
# TODO: filter to ignore single points outside range?
(maxRoll, maxRollLine) = (0.0, 0)
(maxPitch, maxPitchLine) = (0.0, 0)
for (startLine,endLine) in manualSegments+autoSegments:
for (startLine, endLine) in manualSegments + autoSegments:
# quick up-front test, only fallover into more complex line-by-line check if max()>threshold
rollSeg = logdata.channels["ATT"]["Roll"].getSegment(startLine,endLine)
pitchSeg = logdata.channels["ATT"]["Pitch"].getSegment(startLine,endLine)
rollSeg = logdata.channels["ATT"]["Roll"].getSegment(startLine, endLine)
pitchSeg = logdata.channels["ATT"]["Pitch"].getSegment(startLine, endLine)
if not rollSeg.dictData and not pitchSeg.dictData:
continue
# check max roll+pitch for any time where relative altitude is above minAltThreshold
roll = max(abs(rollSeg.min()), abs(rollSeg.max()))
pitch = max(abs(pitchSeg.min()), abs(pitchSeg.max()))
if (roll>(maxLeanAngle+maxLeanAngleBuffer) and abs(roll)>abs(maxRoll)) or (pitch>(maxLeanAngle+maxLeanAngleBuffer) and abs(pitch)>abs(maxPitch)):
if (roll > (maxLeanAngle + maxLeanAngleBuffer) and abs(roll) > abs(maxRoll)) or (
pitch > (maxLeanAngle + maxLeanAngleBuffer) and abs(pitch) > abs(maxPitch)
):
lit = DataflashLog.LogIterator(logdata, startLine)
assert(lit.currentLine == startLine)
assert lit.currentLine == startLine
while lit.currentLine <= endLine:
relativeAlt = lit["CTUN"][self.ctun_baralt_att]
if relativeAlt > minAltThreshold:
roll = lit["ATT"]["Roll"]
pitch = lit["ATT"]["Pitch"]
if abs(roll)>(maxLeanAngle+maxLeanAngleBuffer) and abs(roll)>abs(maxRoll):
if abs(roll) > (maxLeanAngle + maxLeanAngleBuffer) and abs(roll) > abs(maxRoll):
maxRoll = roll
maxRollLine = lit.currentLine
if abs(pitch)>(maxLeanAngle+maxLeanAngleBuffer) and abs(pitch)>abs(maxPitch):
if abs(pitch) > (maxLeanAngle + maxLeanAngleBuffer) and abs(pitch) > abs(maxPitch):
maxPitch = pitch
maxPitchLine = lit.currentLine
next(lit)
# check for breaking max lean angles
if maxRoll and abs(maxRoll)>abs(maxPitch):
if maxRoll and abs(maxRoll) > abs(maxPitch):
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "Roll (%.2f, line %d) > maximum lean angle (%.2f)" % (maxRoll, maxRollLine, maxLeanAngle)
self.result.statusMessage = "Roll (%.2f, line %d) > maximum lean angle (%.2f)" % (
maxRoll,
maxRollLine,
maxLeanAngle,
)
return
if maxPitch:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "Pitch (%.2f, line %d) > maximum lean angle (%.2f)" % (maxPitch, maxPitchLine, maxLeanAngle)
self.result.statusMessage = "Pitch (%.2f, line %d) > maximum lean angle (%.2f)" % (
maxPitch,
maxPitchLine,
maxLeanAngle,
)
return
# TODO: use numpy/scipy to check Roll+RollIn curves for fitness (ignore where we're not airborne)
# ...

View File

@ -1,7 +1,7 @@
from __future__ import print_function
from LogAnalyzer import Test, TestResult
import DataflashLog
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
@ -52,21 +52,21 @@ class TestThrust(Test):
# find any contiguous chunks where CTUN.ThrOut > highThrottleThreshold, ignore high throttle if tilt > tiltThreshold, and discard any segments shorter than minSampleLength
start = None
data = logdata.channels["CTUN"][throut_key].listData
for i in range(0,len(data)):
(lineNumber,value) = data[i]
for i in range(0, len(data)):
(lineNumber, value) = data[i]
isBelowTiltThreshold = True
if value > highThrottleThreshold:
(roll,meh) = logdata.channels["ATT"]["Roll"].getNearestValue(lineNumber)
(pitch,meh) = logdata.channels["ATT"]["Pitch"].getNearestValue(lineNumber)
(roll, meh) = logdata.channels["ATT"]["Roll"].getNearestValue(lineNumber)
(pitch, meh) = logdata.channels["ATT"]["Pitch"].getNearestValue(lineNumber)
if (abs(roll) > tiltThreshold) or (abs(pitch) > tiltThreshold):
isBelowTiltThreshold = False
if (value > highThrottleThreshold) and isBelowTiltThreshold:
if start == None:
start = i
elif start != None:
if (i-start) > minSampleLength:
#print("Found high throttle chunk from line %d to %d (%d samples)" % (data[start][0],data[i][0],i-start+1))
highThrottleSegments.append((start,i))
if (i - start) > minSampleLength:
# print("Found high throttle chunk from line %d to %d (%d samples)" % (data[start][0],data[i][0],i-start+1))
highThrottleSegments.append((start, i))
start = None
climbRate = "CRate"
@ -76,16 +76,13 @@ class TestThrust(Test):
# loop through each checking climbRate, if < 50 FAIL, if < 100 WARN
# TODO: we should filter climbRate and use its slope rather than value for this test
for seg in highThrottleSegments:
(startLine,endLine) = (data[seg[0]][0], data[seg[1]][0])
avgClimbRate = logdata.channels["CTUN"][climbRate].getSegment(startLine,endLine).avg()
avgThrOut = logdata.channels["CTUN"][throut_key].getSegment(startLine,endLine).avg()
(startLine, endLine) = (data[seg[0]][0], data[seg[1]][0])
avgClimbRate = logdata.channels["CTUN"][climbRate].getSegment(startLine, endLine).avg()
avgThrOut = logdata.channels["CTUN"][throut_key].getSegment(startLine, endLine).avg()
if avgClimbRate < climbThresholdFAIL:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "Avg climb rate %.2f cm/s for throttle avg %d" % (avgClimbRate,avgThrOut)
self.result.statusMessage = "Avg climb rate %.2f cm/s for throttle avg %d" % (avgClimbRate, avgThrOut)
return
if avgClimbRate < climbThresholdWARN:
self.result.status = TestResult.StatusType.WARN
self.result.statusMessage = "Avg climb rate %.2f cm/s for throttle avg %d" % (avgClimbRate,avgThrOut)
self.result.statusMessage = "Avg climb rate %.2f cm/s for throttle avg %d" % (avgClimbRate, avgThrOut)

View File

@ -1,8 +1,8 @@
from LogAnalyzer import Test,TestResult
import DataflashLog
import collections
import DataflashLog
from LogAnalyzer import Test, TestResult
class TestVCC(Test):
'''test for VCC within recommendations, or abrupt end to log in flight'''
@ -30,13 +30,15 @@ class TestVCC(Test):
vccMin *= 1000
vccMax *= 1000
vccDiff = vccMax - vccMin;
vccMinThreshold = 4.6 * 1000;
vccMaxDiff = 0.3 * 1000;
vccDiff = vccMax - vccMin
vccMinThreshold = 4.6 * 1000
vccMaxDiff = 0.3 * 1000
if vccDiff > vccMaxDiff:
self.result.status = TestResult.StatusType.WARN
self.result.statusMessage = "VCC min/max diff %sv, should be <%sv" % (vccDiff/1000.0, vccMaxDiff/1000.0)
self.result.statusMessage = "VCC min/max diff %sv, should be <%sv" % (vccDiff / 1000.0, vccMaxDiff / 1000.0)
elif vccMin < vccMinThreshold:
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "VCC below minimum of %sv (%sv)" % (repr(vccMinThreshold/1000.0),repr(vccMin/1000.0))
self.result.statusMessage = "VCC below minimum of %sv (%sv)" % (
repr(vccMinThreshold / 1000.0),
repr(vccMin / 1000.0),
)

View File

@ -1,10 +1,9 @@
from __future__ import print_function
from LogAnalyzer import Test, TestResult
import DataflashLog
from VehicleType import VehicleType
import numpy
from LogAnalyzer import Test, TestResult
from VehicleType import VehicleType
class TestVibration(Test):
@ -14,7 +13,6 @@ class TestVibration(Test):
Test.__init__(self)
self.name = "Vibration"
def run(self, logdata, verbose):
self.result = TestResult()
@ -46,25 +44,31 @@ class TestVibration(Test):
# TODO: accumulate all LOITER chunks over min size, or just use the largest one?
startLine = chunks[0][0]
endLine = chunks[0][1]
#print("TestVibration using LOITER chunk from lines %s to %s" % (repr(startLine), repr(endLine)))
# print("TestVibration using LOITER chunk from lines %s to %s" % (repr(startLine), repr(endLine)))
def getStdDevIMU(logdata, channelName, startLine,endLine):
loiterData = logdata.channels["IMU"][channelName].getSegment(startLine,endLine)
def getStdDevIMU(logdata, channelName, startLine, endLine):
loiterData = logdata.channels["IMU"][channelName].getSegment(startLine, endLine)
numpyData = numpy.array(loiterData.dictData.values())
return numpy.std(numpyData)
# use 2x standard deviations as the metric, so if 95% of samples lie within the aim range we're good
stdDevX = abs(2 * getStdDevIMU(logdata,"AccX",startLine,endLine))
stdDevY = abs(2 * getStdDevIMU(logdata,"AccY",startLine,endLine))
stdDevZ = abs(2 * getStdDevIMU(logdata,"AccZ",startLine,endLine))
stdDevX = abs(2 * getStdDevIMU(logdata, "AccX", startLine, endLine))
stdDevY = abs(2 * getStdDevIMU(logdata, "AccY", startLine, endLine))
stdDevZ = abs(2 * getStdDevIMU(logdata, "AccZ", startLine, endLine))
if (stdDevX > aimRangeFailXY) or (stdDevY > aimRangeFailXY) or (stdDevZ > aimRangeFailZ):
self.result.status = TestResult.StatusType.FAIL
self.result.statusMessage = "Vibration too high (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (stdDevX,stdDevY,stdDevZ)
self.result.statusMessage = "Vibration too high (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (stdDevX, stdDevY, stdDevZ)
elif (stdDevX > aimRangeWarnXY) or (stdDevY > aimRangeWarnXY) or (stdDevZ > aimRangeWarnZ):
self.result.status = TestResult.StatusType.WARN
self.result.statusMessage = "Vibration slightly high (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (stdDevX,stdDevY,stdDevZ)
self.result.statusMessage = "Vibration slightly high (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (
stdDevX,
stdDevY,
stdDevZ,
)
else:
self.result.status = TestResult.StatusType.GOOD
self.result.statusMessage = "Good vibration values (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (stdDevX,stdDevY,stdDevZ)
self.result.statusMessage = "Good vibration values (X:%.2fg, Y:%.2fg, Z:%.2fg)" % (
stdDevX,
stdDevY,
stdDevZ,
)