AP_GyroFFT: correct notch calculation for FFT tune.

use freq_min_ratio for scaling
add harmonic calculation test
set harmonics in notch setup
This commit is contained in:
Andy Piper 2023-01-18 22:57:44 +00:00 committed by Andrew Tridgell
parent 20934491e5
commit 4199ccc292
4 changed files with 75 additions and 20 deletions

View File

@ -701,7 +701,40 @@ void AP_GyroFFT::start_notch_tune()
if (!hal.dsp->fft_start_average(_state)) { if (!hal.dsp->fft_start_average(_state)) {
gcs().send_text(MAV_SEVERITY_WARNING, "FFT: Unable to start FFT averaging"); gcs().send_text(MAV_SEVERITY_WARNING, "FFT: Unable to start FFT averaging");
} }
// throttle averaging for average fft calculation
_avg_throttle_out = 0.0f; _avg_throttle_out = 0.0f;
#if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduPlane)
AP_Motors* motors = AP::motors();
if (motors != nullptr) {
_avg_throttle_out = motors->get_throttle_hover();
}
#endif
}
// calculate the frequency to be used for the harmonic notch
float AP_GyroFFT::calculate_notch_frequency(float* freqs, uint16_t numpeaks, float harmonic_fit, uint8_t& harmonics)
{
float harmonic = freqs[0];
harmonics = 1;
for (uint8_t i = 1; i < numpeaks; i++) {
if (freqs[i] < harmonic) {
for (uint8_t x = 2; x <=HNF_MAX_HARMONICS; x++) {
if (is_harmonic_of(harmonic, freqs[i], x, harmonic_fit)) {
harmonic = freqs[i];
}
}
}
}
// select the harmonics that were matched
for (uint8_t i = 0; i < numpeaks; i++) {
for (uint8_t x = 1; x <=HNF_MAX_HARMONICS; x++) {
if (is_harmonic_of(freqs[i], harmonic, x, harmonic_fit)) {
harmonics |= 1<<(x - 1);
}
}
}
return harmonic;
} }
void AP_GyroFFT::stop_notch_tune() void AP_GyroFFT::stop_notch_tune()
@ -718,21 +751,11 @@ void AP_GyroFFT::stop_notch_tune()
return; return;
} }
float harmonic = freqs[0]; uint8_t harmonics;
float harmonic_fit = 100.0f; float harmonic = calculate_notch_frequency(freqs, numpeaks, _harmonic_fit, harmonics);
for (uint8_t i = 1; i < numpeaks; i++) {
if (freqs[i] < harmonic) {
const float fit = 100.0f * fabsf(harmonic - freqs[i] * _harmonic_multiplier) / harmonic;
if (isfinite(fit) && fit < _harmonic_fit && fit < harmonic_fit) {
harmonic = freqs[i];
harmonic_fit = fit;
}
}
}
gcs().send_text(MAV_SEVERITY_INFO, "FFT: Found peaks at %.1f/%.1f/%.1fHz", freqs[0], freqs[1], freqs[2]); gcs().send_text(MAV_SEVERITY_INFO, "FFT: Found peaks at %.1f/%.1f/%.1fHz", freqs[0], freqs[1], freqs[2]);
gcs().send_text(MAV_SEVERITY_NOTICE, "FFT: Selected %.1fHz with fit %.1f%%\n", harmonic, is_equal(harmonic_fit, 100.0f) ? 100.0f : 100.0f - harmonic_fit); gcs().send_text(MAV_SEVERITY_NOTICE, "FFT: Selected %.1fHz\n", harmonic);
// if we don't have a throttle value then all bets are off // if we don't have a throttle value then all bets are off
if (is_zero(_avg_throttle_out) || is_zero(harmonic)) { if (is_zero(_avg_throttle_out) || is_zero(harmonic)) {
@ -740,17 +763,14 @@ void AP_GyroFFT::stop_notch_tune()
return; return;
} }
// pick a ref which means the notch covers all the way down to FFT_MINHZ if (!_ins->setup_throttle_gyro_harmonic_notch(harmonic, (float)_fft_min_hz.get(), _avg_throttle_out, harmonics)) {
const float thr_ref = _avg_throttle_out * sq((float)_fft_min_hz.get() / harmonic);
if (!_ins->setup_throttle_gyro_harmonic_notch((float)_fft_min_hz.get(), thr_ref)) {
gcs().send_text(MAV_SEVERITY_WARNING, "FFT: Unable to set throttle notch with %.1fHz/%.2f", gcs().send_text(MAV_SEVERITY_WARNING, "FFT: Unable to set throttle notch with %.1fHz/%.2f",
(float)_fft_min_hz.get(), thr_ref); harmonic, _avg_throttle_out);
// save results to FFT slots // save results to FFT slots
_throttle_ref.set(thr_ref); _throttle_ref.set(_avg_throttle_out);
_freq_hover_hz.set(harmonic); _freq_hover_hz.set(harmonic);
} else { } else {
gcs().send_text(MAV_SEVERITY_NOTICE, "FFT: Notch frequency %.1fHz and ref %.2f selected", (float)_fft_min_hz.get(), thr_ref); gcs().send_text(MAV_SEVERITY_NOTICE, "FFT: Notch frequency %.1fHz and ref %.2f selected", harmonic, _avg_throttle_out);
} }
} }

View File

@ -113,6 +113,11 @@ public:
bool check_esc_noise() const { return (_options & uint32_t(Options::ESCNoiseCheck)) != 0; } bool check_esc_noise() const { return (_options & uint32_t(Options::ESCNoiseCheck)) != 0; }
// look for a frequency in the detected noise // look for a frequency in the detected noise
float has_noise_at_frequency_hz(float freq) const; float has_noise_at_frequency_hz(float freq) const;
static float calculate_notch_frequency(float* freqs, uint16_t numpeaks, float harmonic_fit, uint8_t& harmonics);
static bool is_harmonic_of(float harmonic, float fundamental, uint8_t mult, float _fit) {
const float fit = 100.0f * fabsf(harmonic - fundamental * mult) / harmonic;
return (isfinite(fit) && fit < _fit);
}
static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Param::GroupInfo var_info[];
static AP_GyroFFT *get_singleton() { return _singleton; } static AP_GyroFFT *get_singleton() { return _singleton; }

View File

@ -0,0 +1,23 @@
#include <AP_gtest.h>
#include <AP_HAL/HAL.h>
#include <AP_HAL/Util.h>
#include <AP_GyroFFT/AP_GyroFFT.h>
#include <stdio.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
TEST(harmonic_fit_Test, Basic)
{
#if HAL_GYROFFT_ENABLED
float freqs[] { 176.9, 57.2, 228.7 };
uint8_t harmonics;
float harmonic = AP_GyroFFT::calculate_notch_frequency(freqs, 3, 10, harmonics);
printf("FFT: Found peaks at %.1f/%.1f/%.1fHz\n", freqs[0], freqs[1], freqs[2]);
printf("FFT: Selected %.1fHz %d\n", harmonic, harmonics);
EXPECT_TRUE(is_equal(harmonic, 57.2f));
#endif
}
AP_GTEST_MAIN()

View File

@ -0,0 +1,7 @@
#!/usr/bin/env python
# encoding: utf-8
def build(bld):
bld.ap_find_tests(
use='ap',
)