mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 14:38:30 -04:00
AP_MotorsMatrix: stability patch in 0 to 1 range
Includes storing motor level thrusts to _thrust_rpyt_out rename _throttle_thr_mix_desired to _throttle_rpy_mix_desired rename _throttle_thr_mix to _throttle_rpy_mix use get_hover_throttle_as_high_end_pct use throttle_thrust_max updated by multicopter spool logic do not set limits in stability patch
This commit is contained in:
parent
5841310ac7
commit
3fef60da45
@ -172,200 +172,146 @@ void AP_MotorsMatrix::output_armed_not_stabilizing()
|
||||
|
||||
// output_armed - sends commands to the motors
|
||||
// includes new scaling stability patch
|
||||
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
||||
void AP_MotorsMatrix::output_armed_stabilizing()
|
||||
{
|
||||
int8_t i;
|
||||
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
||||
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
||||
int16_t yaw_pwm; // yaw pwm value, initially calculated by calc_yaw_pwm() but may be modified after, +/- 400
|
||||
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
||||
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors
|
||||
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors
|
||||
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors
|
||||
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing
|
||||
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
||||
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing
|
||||
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy
|
||||
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
||||
float rpy_low = 0.0f; // lowest motor value
|
||||
float rpy_high = 0.0f; // highest motor value
|
||||
float yaw_allowed = 1.0f; // amount of yaw we can fit in
|
||||
float unused_range; // amount of yaw we can fit in the current channel
|
||||
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
||||
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0
|
||||
|
||||
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
||||
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors
|
||||
// apply voltage and air pressure compensation
|
||||
roll_thrust = get_roll_thrust() * get_compensation_gain();
|
||||
pitch_thrust = get_pitch_thrust() * get_compensation_gain();
|
||||
yaw_thrust = get_yaw_thrust() * get_compensation_gain();
|
||||
throttle_thrust = get_throttle() * get_compensation_gain();
|
||||
|
||||
int16_t rpy_low = 0; // lowest motor value
|
||||
int16_t rpy_high = 0; // highest motor value
|
||||
int16_t yaw_allowed; // amount of yaw we can fit in
|
||||
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided)
|
||||
|
||||
// initialize limits flags
|
||||
limit.roll_pitch = false;
|
||||
limit.yaw = false;
|
||||
limit.throttle_lower = false;
|
||||
limit.throttle_upper = false;
|
||||
|
||||
// Ensure throttle is within bounds of 0 to 1000
|
||||
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
|
||||
if (_throttle_control_input <= thr_in_min) {
|
||||
_throttle_control_input = thr_in_min;
|
||||
// sanity check throttle is above zero and below current limited throttle
|
||||
if (throttle_thrust <= 0.0f) {
|
||||
throttle_thrust = 0.0f;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
if (_throttle_control_input >= _max_throttle) {
|
||||
_throttle_control_input = _max_throttle;
|
||||
if (throttle_thrust >= _throttle_thrust_max) {
|
||||
throttle_thrust = _throttle_thrust_max;
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
|
||||
roll_pwm = calc_roll_pwm();
|
||||
pitch_pwm = calc_pitch_pwm();
|
||||
yaw_pwm = calc_yaw_pwm();
|
||||
throttle_radio_output = calc_throttle_radio_output();
|
||||
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
|
||||
|
||||
// calculate roll and pitch for each motor
|
||||
// set rpy_low and rpy_high to the lowest and highest values of the motors
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
rpy_out[i] = roll_pwm * _roll_factor[i] * get_compensation_gain() +
|
||||
pitch_pwm * _pitch_factor[i] * get_compensation_gain();
|
||||
|
||||
// record lowest roll pitch command
|
||||
if (rpy_out[i] < rpy_low) {
|
||||
rpy_low = rpy_out[i];
|
||||
}
|
||||
// record highest roll pich command
|
||||
if (rpy_out[i] > rpy_high) {
|
||||
rpy_high = rpy_out[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
|
||||
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest)
|
||||
// calculate throttle that gives most possible room for yaw which is the lower of:
|
||||
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
|
||||
// 2. the higher of:
|
||||
// a) the pilot's throttle input
|
||||
// b) the mid point between the pilot's input throttle and hover-throttle
|
||||
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
|
||||
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
|
||||
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
|
||||
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control)
|
||||
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it
|
||||
int16_t motor_mid = (rpy_low+rpy_high)/2;
|
||||
out_best_thr_pwm = MIN(out_mid_pwm - motor_mid, MAX(throttle_radio_output, throttle_radio_output*MAX(0,1.0f-_throttle_thr_mix)+get_hover_throttle_as_pwm()*_throttle_thr_mix));
|
||||
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
|
||||
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
|
||||
|
||||
// calculate amount of yaw we can fit into the throttle range
|
||||
// this is always equal to or less than the requested yaw from the pilot or rate controller
|
||||
yaw_allowed = MIN(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2;
|
||||
yaw_allowed = MAX(yaw_allowed, _yaw_headroom);
|
||||
|
||||
if (yaw_pwm >= 0) {
|
||||
// if yawing right
|
||||
if (yaw_allowed > yaw_pwm * get_compensation_gain()) {
|
||||
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
|
||||
}else{
|
||||
limit.yaw = true;
|
||||
throttle_thrust_best_rpy = MIN(0.5f, throttle_thrust_rpy_mix);
|
||||
|
||||
// calculate roll and pitch for each motor
|
||||
// calculate the amount of yaw input that each motor can accept
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
_thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i];
|
||||
if (!is_zero(_yaw_factor[i])){
|
||||
if (yaw_thrust * _yaw_factor[i] > 0.0f) {
|
||||
unused_range = fabsf((1.0 - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]))/_yaw_factor[i]);
|
||||
if (yaw_allowed > unused_range) {
|
||||
yaw_allowed = unused_range;
|
||||
}
|
||||
}else{
|
||||
// if yawing left
|
||||
yaw_allowed = -yaw_allowed;
|
||||
if (yaw_allowed < yaw_pwm * get_compensation_gain()) {
|
||||
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
|
||||
}else{
|
||||
limit.yaw = true;
|
||||
} else {
|
||||
unused_range = fabsf((throttle_thrust_best_rpy + _thrust_rpyt_out[i])/_yaw_factor[i]);
|
||||
if (yaw_allowed > unused_range) {
|
||||
yaw_allowed = unused_range;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// todo: make _yaw_headroom 0 to 1
|
||||
yaw_allowed = MAX(yaw_allowed, (float)_yaw_headroom/1000.0f);
|
||||
|
||||
if (fabsf(yaw_thrust) > yaw_allowed) {
|
||||
yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed);
|
||||
limit.yaw = true;
|
||||
}
|
||||
|
||||
// add yaw to intermediate numbers for each motor
|
||||
rpy_low = 0;
|
||||
rpy_high = 0;
|
||||
rpy_low = 0.0f;
|
||||
rpy_high = 0.0f;
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
rpy_out[i] = rpy_out[i] +
|
||||
yaw_allowed * _yaw_factor[i];
|
||||
_thrust_rpyt_out[i] = _thrust_rpyt_out[i] + yaw_thrust * _yaw_factor[i];
|
||||
|
||||
// record lowest roll+pitch+yaw command
|
||||
if( rpy_out[i] < rpy_low ) {
|
||||
rpy_low = rpy_out[i];
|
||||
if (_thrust_rpyt_out[i] < rpy_low) {
|
||||
rpy_low = _thrust_rpyt_out[i];
|
||||
}
|
||||
// record highest roll+pitch+yaw command
|
||||
if( rpy_out[i] > rpy_high) {
|
||||
rpy_high = rpy_out[i];
|
||||
if (_thrust_rpyt_out[i] > rpy_high) {
|
||||
rpy_high = _thrust_rpyt_out[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check everything fits
|
||||
thr_adj = throttle_radio_output - out_best_thr_pwm;
|
||||
|
||||
// calculate upper and lower limits of thr_adj
|
||||
int16_t thr_adj_max = MAX(out_max_pwm-(out_best_thr_pwm+rpy_high),0);
|
||||
|
||||
// if we are increasing the throttle (situation #2 above)..
|
||||
if (thr_adj > 0) {
|
||||
// increase throttle as close as possible to requested throttle
|
||||
// without going over out_max_pwm
|
||||
if (thr_adj > thr_adj_max){
|
||||
thr_adj = thr_adj_max;
|
||||
// we haven't even been able to apply full throttle command
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
}else if(thr_adj < 0){
|
||||
// decrease throttle as close as possible to requested throttle
|
||||
// without going under out_min_pwm or over out_max_pwm
|
||||
// earlier code ensures we can't break both boundaries
|
||||
int16_t thr_adj_min = MIN(out_min_pwm-(out_best_thr_pwm+rpy_low),0);
|
||||
if (thr_adj > thr_adj_max) {
|
||||
thr_adj = thr_adj_max;
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
if (thr_adj < thr_adj_min) {
|
||||
thr_adj = thr_adj_min;
|
||||
}
|
||||
throttle_thrust_best_rpy = MIN(0.5f - (rpy_low+rpy_high)/2.0, throttle_thrust_rpy_mix);
|
||||
if (is_zero(rpy_low)){
|
||||
rpy_scale = 1.0f;
|
||||
} else {
|
||||
rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
// do we need to reduce roll, pitch, yaw command
|
||||
// earlier code does not allow both limit's to be passed simultaneously with abs(_yaw_factor)<1
|
||||
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){
|
||||
// protect against divide by zero
|
||||
if (rpy_low != 0) {
|
||||
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low;
|
||||
}
|
||||
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
||||
// calculate how close the motors can come to the desired throttle
|
||||
thr_adj = throttle_thrust - throttle_thrust_best_rpy;
|
||||
if (rpy_scale < 1.0f){
|
||||
// Full range is being used by roll, pitch, and yaw.
|
||||
limit.roll_pitch = true;
|
||||
limit.yaw = true;
|
||||
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){
|
||||
// protect against divide by zero
|
||||
if (rpy_high != 0) {
|
||||
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high;
|
||||
if (thr_adj > 0.0f) {
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
thr_adj = 0.0f;
|
||||
} else {
|
||||
if (thr_adj < -(throttle_thrust_best_rpy+rpy_low)){
|
||||
// Throttle can't be reduced to desired value
|
||||
thr_adj = -(throttle_thrust_best_rpy+rpy_low);
|
||||
} else if (thr_adj > 1.0f - (throttle_thrust_best_rpy+rpy_high)){
|
||||
// Throttle can't be increased to desired value
|
||||
thr_adj = 1.0f - (throttle_thrust_best_rpy+rpy_high);
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
||||
limit.roll_pitch = true;
|
||||
limit.yaw = true;
|
||||
}
|
||||
|
||||
// add scaled roll, pitch, constrained yaw and throttle for each motor
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
motor_out[i] = out_best_thr_pwm+thr_adj +
|
||||
rpy_scale*rpy_out[i];
|
||||
_thrust_rpyt_out[i] = throttle_thrust_best_rpy + thr_adj + rpy_scale*_thrust_rpyt_out[i];
|
||||
}
|
||||
}
|
||||
|
||||
// apply thrust curve and voltage scaling
|
||||
// constrain all outputs to 0.0f to 1.0f
|
||||
// test code should be run with these lines commented out as they should not do anything
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
motor_out[i] = apply_thrust_curve_and_volt_scaling(motor_out[i], out_min_pwm, out_max_pwm);
|
||||
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i], 0.0f, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// clip motor output if required (shouldn't be)
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
||||
if (motor_enabled[i]) {
|
||||
motor_out[i] = constrain_int16(motor_out[i], out_min_pwm, out_max_pwm);
|
||||
}
|
||||
}
|
||||
|
||||
// send output to each motor
|
||||
hal.rcout->cork();
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
rc_write(i, motor_out[i]);
|
||||
}
|
||||
}
|
||||
hal.rcout->push();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
|
@ -75,5 +75,6 @@ protected:
|
||||
float _roll_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to roll
|
||||
float _pitch_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to pitch
|
||||
float _yaw_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to yaw (normally 1 or -1)
|
||||
float _thrust_rpyt_out[AP_MOTORS_MAX_NUM_MOTORS]; // combined roll, pitch, yaw and throttle outputs to motors in 0~1 range
|
||||
uint8_t _test_order[AP_MOTORS_MAX_NUM_MOTORS]; // order of the motors in the test sequence
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user