AP_InertialSensor: add fifo support for MPU6000

And remove the use of data rdy in this case
This commit is contained in:
Julien BERAUD 2015-07-02 19:22:36 +02:00 committed by Andrew Tridgell
parent 8a76ff53bd
commit 3cf952d1f8
3 changed files with 231 additions and 83 deletions

View File

@ -407,10 +407,9 @@ AP_InertialSensor::_detect_backends(void)
#if HAL_INS_DEFAULT == HAL_INS_HIL
_add_backend(AP_InertialSensor_HIL::detect);
#elif HAL_INS_DEFAULT == HAL_INS_MPU60XX_SPI
_backends[_backend_count++] = new AP_InertialSensor_MPU6000(*this, new AP_MPU6000_BusDriver_SPI());
_add_backend(AP_InertialSensor_MPU6000::detect_spi);
#elif HAL_INS_DEFAULT == HAL_INS_MPU60XX_I2C && HAL_INS_MPU60XX_I2C_BUS == 2
_backends[_backend_count++] = new AP_InertialSensor_MPU6000(*this,
new AP_MPU6000_BusDriver_I2C(hal.i2c2, HAL_INS_MPU60XX_I2C_ADDR));
_add_backend(AP_InertialSensor_MPU6000::detect_i2c2);
#elif HAL_INS_DEFAULT == HAL_INS_PX4 || HAL_INS_DEFAULT == HAL_INS_VRBRAIN
_add_backend(AP_InertialSensor_PX4::detect);
#elif HAL_INS_DEFAULT == HAL_INS_OILPAN

View File

@ -61,6 +61,14 @@ extern const AP_HAL::HAL& hal;
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN 0x23
# define BIT_TEMP_FIFO_EN 0x80
# define BIT_XG_FIFO_EN 0x40
# define BIT_YG_FIFO_EN 0x20
# define BIT_ZG_FIFO_EN 0x10
# define BIT_ACCEL_FIFO_EN 0x08
# define BIT_SLV2_FIFO_EN 0x04
# define BIT_SLV1_FIFO_EN 0x02
# define BIT_SLV0_FIFI_EN0 0x01
#define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
@ -158,20 +166,41 @@ extern const AP_HAL::HAL& hal;
#define MPU6000_REV_D8 0x58 // 0101 1000
#define MPU6000_REV_D9 0x59 // 0101 1001
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
#if !defined(HAL_INS_MPU60XX_I2C_ADDR)
#define HAL_INS_MPU60XX_I2C_ADDR 0x68
#endif
/* SPI bus driver implementation */
void AP_MPU6000_BusDriver_SPI::init()
void AP_MPU6000_BusDriver_SPI::init(bool &fifo_mode, uint8_t &max_samples)
{
fifo_mode = false;
_error_count = 0;
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000);
// Disable I2C bus if SPI selected (Recommended in Datasheet
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
/* maximum number of samples read by a burst
* a sample is an array containing :
* gyro_x
* gyro_y
* gyro_z
* accel_x
* accel_y
* accel_z
*/
max_samples = 1;
};
void AP_MPU6000_BusDriver_SPI::read8(uint8_t reg, uint8_t *val)
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
@ -190,10 +219,12 @@ void AP_MPU6000_BusDriver_SPI::write8(uint8_t reg, uint8_t val)
void AP_MPU6000_BusDriver_SPI::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed)
{
set_bus_speed(speed);
_spi->set_bus_speed(speed);
}
uint8_t AP_MPU6000_BusDriver_SPI::read_burst(uint8_t v[14])
void AP_MPU6000_BusDriver_SPI::read_burst(uint8_t *samples,
AP_HAL::DigitalSource *_drdy_pin,
uint8_t &n_samples)
{
/* one resister address followed by seven 2-byte registers */
struct PACKED {
@ -204,9 +235,28 @@ uint8_t AP_MPU6000_BusDriver_SPI::read_burst(uint8_t v[14])
_spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx));
memcpy(v, rx.d, 14);
/*
detect a bad SPI bus transaction by looking for all 14 bytes
zero, or the wrong INT_STATUS register value. This is used to
detect a too high SPI bus speed.
*/
uint8_t i;
for (i=0; i<14; i++) {
if (rx.d[i] != 0) break;
}
if ((rx.int_status&~0x6) != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT) || i == 14) {
// likely a bad bus transaction
if (++_error_count > 4) {
set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
}
}
return rx.int_status;
n_samples = 1;
/* remove temperature and cmd from data sample */
memcpy(&samples[0], &rx.d[0], 6);
memcpy(&samples[6], &rx.d[8], 6);
return;
}
AP_HAL::Semaphore* AP_MPU6000_BusDriver_SPI::get_semaphore()
@ -220,8 +270,25 @@ AP_MPU6000_BusDriver_I2C::AP_MPU6000_BusDriver_I2C(AP_HAL::I2CDriver *i2c, uint8
_addr(addr)
{}
void AP_MPU6000_BusDriver_I2C::init()
{}
void AP_MPU6000_BusDriver_I2C::init(bool &fifo_mode, uint8_t &max_samples)
{
// enable fifo mode
fifo_mode = true;
write8(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN |
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN);
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_SIG_COND_RESET);
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN);
/* maximum number of samples read by a burst
* a sample is an array containing :
* gyro_x
* gyro_y
* gyro_z
* accel_x
* accel_y
* accel_z
*/
max_samples = MPU6000_MAX_FIFO_SAMPLES;
}
void AP_MPU6000_BusDriver_I2C::read8(uint8_t reg, uint8_t *val)
{
@ -236,17 +303,53 @@ void AP_MPU6000_BusDriver_I2C::write8(uint8_t reg, uint8_t val)
void AP_MPU6000_BusDriver_I2C::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed)
{}
uint8_t AP_MPU6000_BusDriver_I2C::read_burst(uint8_t v[14])
void AP_MPU6000_BusDriver_I2C::read_burst(uint8_t *samples,
AP_HAL::DigitalSource *_drdy_pin,
uint8_t &n_samples)
{
struct PACKED {
uint8_t int_status;
uint8_t d[14];
} rx;
uint16_t bytes_read;
uint8_t ret = 0;
_i2c->readRegisters(_addr, MPUREG_INT_STATUS, 15, (uint8_t *) &rx);
memcpy(v, rx.d, 14);
ret = _i2c->readRegisters(_addr, MPUREG_FIFO_COUNTH, 2, _rx);
if(ret != 0) {
hal.console->printf_P(PSTR("MPU6000: error in i2c read\n"));
n_samples = 0;
return;
}
return rx.int_status;
bytes_read = uint16_val(_rx, 0);
n_samples = bytes_read / MPU6000_SAMPLE_SIZE;
if(n_samples > 3) {
hal.console->printf_P(PSTR("bytes_read = %d, n_samples %d > 3, dropping samples\n"),
bytes_read, n_samples);
/* Too many samples, do a FIFO RESET */
write8(MPUREG_USER_CTRL, 0);
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_SIG_COND_RESET);
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN);
n_samples = 0;
return;
}
else if (n_samples == 0) {
/* Not enough data in FIFO */
return;
}
else {
ret = _i2c->readRegisters(_addr, MPUREG_FIFO_R_W, n_samples * MPU6000_SAMPLE_SIZE, _rx);
}
if(ret != 0) {
hal.console->printf_P(PSTR("MPU6000: error in i2c read %d bytes\n"),
n_samples * MPU6000_SAMPLE_SIZE);
n_samples = 0;
return;
}
memcpy(samples, _rx, MPU6000_SAMPLE_SIZE * MPU6000_MAX_FIFO_SAMPLES);
return;
}
AP_HAL::Semaphore* AP_MPU6000_BusDriver_I2C::get_semaphore()
@ -275,7 +378,6 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_
_bus_sem(NULL),
_last_accel_filter_hz(-1),
_last_gyro_filter_hz(-1),
_error_count(0),
#if MPU6000_FAST_SAMPLING
_accel_filter(1000, 15),
_gyro_filter(1000, 15),
@ -285,6 +387,43 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_
_gyro_sum(),
#endif
_sum_count(0)
{
}
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect_spi(AP_InertialSensor &_imu)
{
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu, new AP_MPU6000_BusDriver_SPI());
if (sensor == NULL) {
return NULL;
}
if (!sensor->_init_sensor()) {
delete sensor;
return NULL;
}
return sensor;
}
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect_i2c2(AP_InertialSensor &_imu)
{
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu,
new AP_MPU6000_BusDriver_I2C(hal.i2c2, HAL_INS_MPU60XX_I2C_ADDR));
if (sensor == NULL) {
return NULL;
}
if (!sensor->_init_sensor()) {
delete sensor;
return NULL;
}
return sensor;
}
bool AP_InertialSensor_MPU6000::_init_sensor(void)
{
_bus_sem = _bus->get_semaphore();
@ -301,19 +440,17 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_
if (success) {
hal.scheduler->delay(5+2);
if (!_bus_sem->take(100)) {
return;
return false;
}
if (_data_ready()) {
_bus_sem->give();
break;
} else {
return;
}
_bus_sem->give();
}
if (tries++ > 5) {
hal.console->print_P(PSTR("failed to boot MPU6000 5 times"));
return;
return false;
}
} while (1);
@ -330,10 +467,8 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_
_dump_registers();
#endif
return;
return true;
}
/*
process any
*/
@ -429,59 +564,50 @@ void AP_InertialSensor_MPU6000::_poll_data(void)
if (!_bus_sem->take_nonblocking()) {
return;
}
if (_data_ready()) {
if (_fifo_mode || _data_ready()) {
_read_data_transaction();
}
_bus_sem->give();
}
void AP_InertialSensor_MPU6000::_read_data_transaction() {
/* one resister address followed by seven 2-byte registers */
uint8_t v[14];
uint8_t int_status = _bus->read_burst(v);
/*
detect a bad SPI bus transaction by looking for all 14 bytes
zero, or the wrong INT_STATUS register value. This is used to
detect a too high SPI bus speed.
*/
uint8_t i;
for (i=0; i<14; i++) {
if (v[i] != 0) break;
}
if ((int_status&~0x6) != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT) || i == 14) {
// likely a bad bus transaction
if (++_error_count > 4) {
_bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
}
}
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
{
for(uint8_t i=0; i < n_samples; i++) {
uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i;
#if MPU6000_FAST_SAMPLING
_accel_filtered = _accel_filter.apply(Vector3f(int16_val(v, 1),
int16_val(v, 0),
-int16_val(v, 2)));
_accel_filtered = _accel_filter.apply(Vector3f(int16_val(data, 1),
int16_val(data, 0),
-int16_val(data, 2)));
_gyro_filtered = _gyro_filter.apply(Vector3f(int16_val(v, 5),
int16_val(v, 4),
-int16_val(v, 6)));
_gyro_filtered = _gyro_filter.apply(Vector3f(int16_val(data, 4),
int16_val(data, 3),
-int16_val(data, 5)));
#else
_accel_sum.x += int16_val(v, 1);
_accel_sum.y += int16_val(v, 0);
_accel_sum.z -= int16_val(v, 2);
_gyro_sum.x += int16_val(v, 5);
_gyro_sum.y += int16_val(v, 4);
_gyro_sum.z -= int16_val(v, 6);
_accel_sum.x += int16_val(data, 1);
_accel_sum.y += int16_val(data, 0);
_accel_sum.z -= int16_val(data, 2);
_gyro_sum.x += int16_val(data, 4);
_gyro_sum.y += int16_val(data, 3);
_gyro_sum.z -= int16_val(data, 5);
#endif
_sum_count++;
_sum_count++;
#if !MPU6000_FAST_SAMPLING
if (_sum_count == 0) {
if (_sum_count == 0) {
// rollover - v unlikely
_accel_sum.zero();
_gyro_sum.zero();
}
_accel_sum.zero();
_gyro_sum.zero();
}
#endif
}
}
void AP_InertialSensor_MPU6000::_read_data_transaction()
{
uint8_t n_samples;
_bus->read_burst(_samples, _drdy_pin, n_samples);
_accumulate(_samples, n_samples);
}
uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg )
@ -541,6 +667,8 @@ void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz)
bool AP_InertialSensor_MPU6000::_hardware_init(void)
{
uint8_t max_samples;
if (!_bus_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
}
@ -561,9 +689,9 @@ bool AP_InertialSensor_MPU6000::_hardware_init(void)
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO)
break;
}
#if MPU6000_DEBUG
_dump_registers();
#endif
@ -577,7 +705,9 @@ bool AP_InertialSensor_MPU6000::_hardware_init(void)
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
hal.scheduler->delay(1);
_bus->init();
_bus->init(_fifo_mode, max_samples);
/* each sample is on 16 bits */
_samples = new uint8_t[max_samples * MPU6000_SAMPLE_SIZE];
hal.scheduler->delay(1);
#if MPU6000_FAST_SAMPLING
@ -609,7 +739,11 @@ bool AP_InertialSensor_MPU6000::_hardware_init(void)
_set_filter_register(256);
// set sample rate to 1000Hz and apply a software filter
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_1000HZ);
// In this configuration, the gyro sample rate is 8kHz
// Therefore the sample rate value is 8kHz/(SMPLRT_DIV + 1)
// So we have to set it to 7 to have a 1kHz sampling
// rate on the gyro
_register_write(MPUREG_SMPLRT_DIV, 7);
#else
_set_filter_register(_accel_filter_cutoff());

View File

@ -24,17 +24,23 @@
#include <LowPassFilter2p.h>
#endif
#define MPU6000_SAMPLE_SIZE 12
#define MPU6000_MAX_FIFO_SAMPLES 3
#define MAX_DATA_READ (MPU6000_MAX_FIFO_SAMPLES * MPU6000_SAMPLE_SIZE)
class AP_MPU6000_BusDriver
{
public:
virtual void init() = 0;
virtual void init(bool &fifo_mode, uint8_t &max_samples) = 0;
virtual void read8(uint8_t reg, uint8_t *val) = 0;
virtual void write8(uint8_t reg, uint8_t val) = 0;
enum bus_speed {
SPEED_LOW, SPEED_HIGH
};
virtual void set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed) = 0;
virtual uint8_t read_burst(uint8_t v[14]) = 0;
virtual void read_burst(uint8_t* samples,
AP_HAL::DigitalSource *_drdy_pin,
uint8_t &n_samples) = 0;
virtual AP_HAL::Semaphore* get_semaphore() = 0;
};
@ -42,6 +48,8 @@ class AP_InertialSensor_MPU6000 : public AP_InertialSensor_Backend
{
public:
AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_MPU6000_BusDriver *bus);
static AP_InertialSensor_Backend *detect_i2c2(AP_InertialSensor &_imu);
static AP_InertialSensor_Backend *detect_spi(AP_InertialSensor &_imu);
/* update accel and gyro state */
bool update();
@ -59,19 +67,19 @@ private:
uint8_t _accel_instance;
AP_HAL::DigitalSource *_drdy_pin;
bool _init_sensor(void);
bool _sample_available();
void _read_data_transaction();
bool _data_ready();
void _poll_data(void);
uint8_t _register_read( uint8_t reg );
uint8_t _register_read( uint8_t reg);
void _register_write( uint8_t reg, uint8_t val );
void _register_write_check(uint8_t reg, uint8_t val);
bool _hardware_init(void);
void _accumulate(uint8_t *samples, uint8_t n_samples);
AP_MPU6000_BusDriver *_bus;
AP_HAL::Semaphore *_bus_sem;
AP_HAL::Semaphore *_bus_sem;
static const float _gyro_scale;
@ -81,9 +89,6 @@ private:
void _set_filter_register(uint16_t filter_hz);
// count of bus errors
uint16_t _error_count;
// how many hardware samples before we report a sample to the caller
uint8_t _sample_count;
@ -101,37 +106,47 @@ private:
Vector3l _gyro_sum;
#endif
volatile uint16_t _sum_count;
bool _fifo_mode;
uint8_t *_samples;
};
class AP_MPU6000_BusDriver_SPI : public AP_MPU6000_BusDriver
{
public:
void init();
void init(bool &fifo_mode, uint8_t &max_samples);
void read8(uint8_t reg, uint8_t *val);
void write8(uint8_t reg, uint8_t val);
void set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed);
uint8_t read_burst(uint8_t v[14]);
void read_burst(uint8_t* samples,
AP_HAL::DigitalSource *_drdy_pin,
uint8_t &n_samples);
AP_HAL::Semaphore* get_semaphore();
private:
AP_HAL::SPIDeviceDriver *_spi;
AP_HAL::Semaphore *_spi_sem;
// count of bus errors
uint16_t _error_count;
};
class AP_MPU6000_BusDriver_I2C : public AP_MPU6000_BusDriver
{
public:
AP_MPU6000_BusDriver_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr);
void init();
void init(bool &fifo_mode, uint8_t &max_samples);
void read8(uint8_t reg, uint8_t *val);
void write8(uint8_t reg, uint8_t val);
void set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed);
uint8_t read_burst(uint8_t v[14]);
void read_burst(uint8_t* samples,
AP_HAL::DigitalSource *_drdy_pin,
uint8_t &n_samples);
AP_HAL::Semaphore* get_semaphore();
private:
uint8_t _addr;
AP_HAL::I2CDriver *_i2c;
AP_HAL::Semaphore *_i2c_sem;
uint8_t _rx[MAX_DATA_READ];
};
#endif // __AP_INERTIAL_SENSOR_MPU6000_H__