AP_UAVCAN: reorganize header and code

Also a bit more cleanup
This commit is contained in:
Francisco Ferreira 2018-07-20 14:46:29 +01:00
parent ee8e2923ae
commit 3cb8421aa6
No known key found for this signature in database
GPG Key ID: F63C20A6773E787E
2 changed files with 319 additions and 343 deletions

View File

@ -35,6 +35,8 @@
#include <uavcan/equipment/power/BatteryInfo.hpp> #include <uavcan/equipment/power/BatteryInfo.hpp>
#define LED_DELAY_US 50000
extern const AP_HAL::HAL& hal; extern const AP_HAL::HAL& hal;
#define debug_uavcan(level_debug, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(_driver_index)) { printf(fmt, ##args); }} while (0) #define debug_uavcan(level_debug, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(_driver_index)) { printf(fmt, ##args); }} while (0)
@ -419,9 +421,19 @@ AP_UAVCAN::~AP_UAVCAN()
{ {
} }
AP_UAVCAN *AP_UAVCAN::get_uavcan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_protocol_type(driver_index) != AP_BoardConfig_CAN::Protocol_Type_UAVCAN) {
return nullptr;
}
return static_cast<AP_UAVCAN*>(AP::can().get_driver(driver_index));
}
void AP_UAVCAN::init(uint8_t driver_index) void AP_UAVCAN::init(uint8_t driver_index)
{ {
if (_initialized) { if (_initialized) {
debug_uavcan(2, "UAVCAN: init called more than once\n\r");
return; return;
} }
@ -429,25 +441,30 @@ void AP_UAVCAN::init(uint8_t driver_index)
AP_HAL::CANManager* can_mgr = hal.can_mgr[driver_index]; AP_HAL::CANManager* can_mgr = hal.can_mgr[driver_index];
if (can_mgr == nullptr) { if (can_mgr == nullptr) {
debug_uavcan(2, "UAVCAN: init called for inexisting CAN driver\n\r");
return; return;
} }
if (!can_mgr->is_initialized()) { if (!can_mgr->is_initialized()) {
debug_uavcan(1, "UAVCAN: CAN driver not initialized\n\r");
return; return;
} }
uavcan::ICanDriver* driver = can_mgr->get_driver(); uavcan::ICanDriver* driver = can_mgr->get_driver();
if (driver == nullptr) { if (driver == nullptr) {
debug_uavcan(2, "UAVCAN: can't get UAVCAN interface driver\n\r");
return; return;
} }
_node = new uavcan::Node<0>(*driver, get_system_clock(), _node_allocator); _node = new uavcan::Node<0>(*driver, SystemClock::instance(), _node_allocator);
if (_node == nullptr) { if (_node == nullptr) {
debug_uavcan(1, "UAVCAN: couldn't allocate node\n\r");
return; return;
} }
if (_node->isStarted()) { if (_node->isStarted()) {
debug_uavcan(2, "UAVCAN: node was already started?\n\r");
return; return;
} }
@ -473,7 +490,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
int start_res = _node->start(); int start_res = _node->start();
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN: node start problem\n\r"); debug_uavcan(1, "UAVCAN: node start problem, error %d\n\r", start_res);
return; return;
} }
@ -482,7 +499,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = gnss_fix->start(gnss_fix_cb_arr[driver_index]); start_res = gnss_fix->start(gnss_fix_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN GNSS subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -491,7 +508,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = gnss_aux->start(gnss_aux_cb_arr[driver_index]); start_res = gnss_aux->start(gnss_aux_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -500,7 +517,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = magnetic->start(magnetic_cb_arr[driver_index]); start_res = magnetic->start(magnetic_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN Compass subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN Compass subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -509,7 +526,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = magnetic2->start(magnetic_cb_2_arr[driver_index]); start_res = magnetic2->start(magnetic_cb_2_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN Compass for multiple mags subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN Compass for multiple mags subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -518,7 +535,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = air_data_sp->start(air_data_sp_cb_arr[driver_index]); start_res = air_data_sp->start(air_data_sp_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN Baro subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN Baro subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -527,7 +544,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = air_data_st->start(air_data_st_cb_arr[driver_index]); start_res = air_data_st->start(air_data_st_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN Temperature subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN Temperature subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -536,7 +553,7 @@ void AP_UAVCAN::init(uint8_t driver_index)
start_res = battery_info_st->start(battery_info_st_cb_arr[driver_index]); start_res = battery_info_st->start(battery_info_st_cb_arr[driver_index]);
if (start_res < 0) { if (start_res < 0) {
debug_uavcan(1, "UAVCAN BatteryInfo subscriber start problem\n\r"); debug_uavcan(1, "UAVCAN BatteryInfo subscriber start problem, error %d\n\r", start_res);
return; return;
} }
@ -575,27 +592,66 @@ void AP_UAVCAN::init(uint8_t driver_index)
debug_uavcan(2, "UAVCAN: init done\n\r"); debug_uavcan(2, "UAVCAN: init done\n\r");
} }
void AP_UAVCAN::SRV_sem_take() void AP_UAVCAN::loop(void)
{ {
SRV_sem->take_blocking(); while (true) {
if (!_initialized) {
hal.scheduler->delay_microseconds(1000);
continue;
} }
void AP_UAVCAN::SRV_sem_give() const int error = _node->spin(uavcan::MonotonicDuration::fromMSec(1));
{
SRV_sem->give(); if (error < 0) {
hal.scheduler->delay_microseconds(100);
continue;
} }
void AP_UAVCAN::SRV_send_servos(void) if (_SRV_armed) {
bool sent_servos = false;
if (_servo_bm > 0) {
// if we have any Servos in bitmask
uint32_t now = AP_HAL::micros();
const uint32_t servo_period_us = 1000000UL / unsigned(_servo_rate_hz.get());
if (now - _SRV_last_send_us >= servo_period_us) {
_SRV_last_send_us = now;
SRV_send_actuator();
sent_servos = true;
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].servo_pending = false;
}
}
}
// if we have any ESC's in bitmask
if (_esc_bm > 0 && !sent_servos) {
SRV_send_esc();
}
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
}
}
led_out_send();
}
}
///// SRV output /////
void AP_UAVCAN::SRV_send_actuator(void)
{ {
uint8_t starting_servo = 0; uint8_t starting_servo = 0;
bool repeat_send; bool repeat_send;
SRV_sem->take_blocking();
do { do {
repeat_send = false; repeat_send = false;
uavcan::equipment::actuator::ArrayCommand msg; uavcan::equipment::actuator::ArrayCommand msg;
SRV_sem_take();
uint8_t i; uint8_t i;
// UAVCAN can hold maximum of 15 commands in one frame // UAVCAN can hold maximum of 15 commands in one frame
for (i = 0; starting_servo < UAVCAN_SRV_NUMBER && i < 15; starting_servo++) { for (i = 0; starting_servo < UAVCAN_SRV_NUMBER && i < 15; starting_servo++) {
@ -625,8 +681,6 @@ void AP_UAVCAN::SRV_send_servos(void)
} }
} }
SRV_sem_give();
if (i > 0) { if (i > 0) {
act_out_array[_driver_index]->broadcast(msg); act_out_array[_driver_index]->broadcast(msg);
@ -635,6 +689,8 @@ void AP_UAVCAN::SRV_send_servos(void)
} }
} }
} while (repeat_send); } while (repeat_send);
SRV_sem->give();
} }
void AP_UAVCAN::SRV_send_esc(void) void AP_UAVCAN::SRV_send_esc(void)
@ -645,6 +701,8 @@ void AP_UAVCAN::SRV_send_esc(void)
uint8_t active_esc_num = 0, max_esc_num = 0; uint8_t active_esc_num = 0, max_esc_num = 0;
uint8_t k = 0; uint8_t k = 0;
SRV_sem->take_blocking();
// find out how many esc we have enabled and if they are active at all // find out how many esc we have enabled and if they are active at all
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) { for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) { if ((((uint32_t) 1) << i) & _esc_bm) {
@ -659,8 +717,6 @@ void AP_UAVCAN::SRV_send_esc(void)
if (active_esc_num > 0) { if (active_esc_num > 0) {
k = 0; k = 0;
SRV_sem_take();
for (uint8_t i = 0; i < max_esc_num && k < 20; i++) { for (uint8_t i = 0; i < max_esc_num && k < 20; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) { if ((((uint32_t) 1) << i) & _esc_bm) {
// TODO: ESC negative scaling for reverse thrust and reverse rotation // TODO: ESC negative scaling for reverse thrust and reverse rotation
@ -675,134 +731,110 @@ void AP_UAVCAN::SRV_send_esc(void)
k++; k++;
} }
SRV_sem_give();
esc_raw[_driver_index]->broadcast(esc_msg); esc_raw[_driver_index]->broadcast(esc_msg);
} }
}
void AP_UAVCAN::loop(void) SRV_sem->give();
{
while (true) {
if (!_initialized) {
hal.scheduler->delay_microseconds(1000);
continue;
}
const int error = _node->spin(uavcan::MonotonicDuration::fromMSec(1));
if (error < 0) {
hal.scheduler->delay_microseconds(100);
continue;
}
if (_SRV_armed) {
bool sent_servos = false;
if (_servo_bm > 0) {
// if we have any Servos in bitmask
uint32_t now = AP_HAL::micros();
const uint32_t servo_period_us = 1000000UL / unsigned(_servo_rate_hz.get());
if (now - _SRV_last_send_us >= servo_period_us) {
_SRV_last_send_us = now;
SRV_send_servos();
sent_servos = true;
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].servo_pending = false;
}
}
}
// if we have any ESC's in bitmask
if (_esc_bm > 0 && !sent_servos) {
SRV_send_esc();
}
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
}
}
if (led_out_sem_take()) {
led_out_send();
led_out_sem_give();
}
}
}
bool AP_UAVCAN::led_out_sem_take()
{
bool sem_ret = _led_out_sem->take(10);
if (!sem_ret) {
debug_uavcan(1, "AP_UAVCAN LEDOut semaphore fail\n\r");
}
return sem_ret;
}
void AP_UAVCAN::led_out_sem_give()
{
_led_out_sem->give();
}
void AP_UAVCAN::led_out_send()
{
if (_led_conf.broadcast_enabled && ((AP_HAL::micros64() - _led_conf.last_update) > (AP_UAVCAN_LED_DELAY_MILLISECONDS * 1000))) {
uavcan::equipment::indication::LightsCommand msg;
uavcan::equipment::indication::SingleLightCommand cmd;
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
if (_led_conf.devices[i].enabled) {
cmd.light_id =_led_conf.devices[i].led_index;
cmd.color.red = (_led_conf.devices[i].red >> 3);
cmd.color.green = (_led_conf.devices[i].green >> 2);
cmd.color.blue = (_led_conf.devices[i].blue >> 3);
msg.commands.push_back(cmd);
}
}
rgb_led[_driver_index]->broadcast(msg);
_led_conf.last_update = AP_HAL::micros64();
}
}
uavcan::ISystemClock & AP_UAVCAN::get_system_clock()
{
return SystemClock::instance();
}
void AP_UAVCAN::SRV_arm_actuators(bool arm)
{
_SRV_armed = arm;
}
void AP_UAVCAN::SRV_write(uint16_t pulse_len, uint8_t ch)
{
_SRV_conf[ch].pulse = pulse_len;
_SRV_conf[ch].esc_pending = true;
_SRV_conf[ch].servo_pending = true;
} }
void AP_UAVCAN::SRV_push_servos() void AP_UAVCAN::SRV_push_servos()
{ {
SRV_sem_take(); SRV_sem->take_blocking();
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
// Check if this channels has any function assigned // Check if this channels has any function assigned
if (SRV_Channels::channel_function(i)) { if (SRV_Channels::channel_function(i)) {
SRV_write(SRV_Channels::srv_channel(i)->get_output_pwm(), i); _SRV_conf[i].pulse = SRV_Channels::srv_channel(i)->get_output_pwm();
_SRV_conf[i].esc_pending = true;
_SRV_conf[i].servo_pending = true;
} }
} }
SRV_sem_give(); SRV_sem->give();
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { _SRV_armed = hal.util->get_soft_armed() && hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED;
SRV_arm_actuators(true); }
} else {
SRV_arm_actuators(false);
///// LED /////
void AP_UAVCAN::led_out_send()
{
uint64_t now = AP_HAL::micros64();
if ((now - _led_conf.last_update) < LED_DELAY_US) {
return;
}
if (!_led_out_sem->take(1)) {
return;
}
if (_led_conf.devices_count == 0) {
_led_out_sem->give();
return;
}
uavcan::equipment::indication::LightsCommand msg;
uavcan::equipment::indication::SingleLightCommand cmd;
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
cmd.light_id =_led_conf.devices[i].led_index;
cmd.color.red = _led_conf.devices[i].red >> 3;
cmd.color.green = _led_conf.devices[i].green >> 2;
cmd.color.blue = _led_conf.devices[i].blue >> 3;
msg.commands.push_back(cmd);
}
_led_out_sem->give();
rgb_led[_driver_index]->broadcast(msg);
_led_conf.last_update = now;
}
bool AP_UAVCAN::led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue)
{
if (_led_conf.devices_count >= AP_UAVCAN_MAX_LED_DEVICES) {
return false;
}
if (!_led_out_sem->take(1)) {
return false;
}
// check if a device instance exists. if so, break so the instance index is remembered
uint8_t instance = 0;
for (; instance < _led_conf.devices_count; instance++) {
if (_led_conf.devices[instance].led_index == led_index) {
break;
} }
} }
// load into the correct instance.
// if an existing instance was found in above for loop search,
// then instance value is < _led_conf.devices_count.
// otherwise a new one was just found so we increment the count.
// Either way, the correct instance is the current value of instance
_led_conf.devices[instance].led_index = led_index;
_led_conf.devices[instance].red = red;
_led_conf.devices[instance].green = green;
_led_conf.devices[instance].blue = blue;
if (instance == _led_conf.devices_count) {
_led_conf.devices_count++;
}
_led_out_sem->give();
return true;
}
///// GPS /////
uint8_t AP_UAVCAN::find_gps_without_listener(void) uint8_t AP_UAVCAN::find_gps_without_listener(void)
{ {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
@ -933,6 +965,25 @@ void AP_UAVCAN::update_gps_state(uint8_t node)
} }
} }
///// BARO /////
/*
* Find discovered not taken baro node with smallest node ID
*/
uint8_t AP_UAVCAN::find_smallest_free_baro_node()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_node_taken[i] == 0) {
ret = MIN(ret, _baro_nodes[i]);
}
}
return ret;
}
uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel) uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel)
{ {
uint8_t sel_place = UINT8_MAX, ret = 0; uint8_t sel_place = UINT8_MAX, ret = 0;
@ -1054,16 +1105,22 @@ void AP_UAVCAN::update_baro_state(uint8_t node)
} }
} }
///// COMPASS /////
/* /*
* Find discovered not taken baro node with smallest node ID * Find discovered mag node with smallest node ID and which is taken N times,
* where N is less than its maximum sensor id.
* This allows multiple AP_Compass_UAVCAN instanses listening multiple compasses
* that are on one node.
*/ */
uint8_t AP_UAVCAN::find_smallest_free_baro_node() uint8_t AP_UAVCAN::find_smallest_free_mag_node()
{ {
uint8_t ret = UINT8_MAX; uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_baro_node_taken[i] == 0) { if (_mag_node_taken[i] < _mag_node_max_sensorid_count[i]) {
ret = MIN(ret, _baro_nodes[i]); ret = MIN(ret, _mag_nodes[i]);
} }
} }
@ -1184,25 +1241,6 @@ AP_UAVCAN::Mag_Info *AP_UAVCAN::find_mag_node(uint8_t node, uint8_t sensor_id)
return nullptr; return nullptr;
} }
/*
* Find discovered mag node with smallest node ID and which is taken N times,
* where N is less than its maximum sensor id.
* This allows multiple AP_Compass_UAVCAN instanses listening multiple compasses
* that are on one node.
*/
uint8_t AP_UAVCAN::find_smallest_free_mag_node()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_node_taken[i] < _mag_node_max_sensorid_count[i]) {
ret = MIN(ret, _mag_nodes[i]);
}
}
return ret;
}
void AP_UAVCAN::update_mag_state(uint8_t node, uint8_t sensor_id) void AP_UAVCAN::update_mag_state(uint8_t node, uint8_t sensor_id)
{ {
// Go through all listeners of specified node and call their's update methods // Go through all listeners of specified node and call their's update methods
@ -1241,6 +1279,22 @@ void AP_UAVCAN::update_mag_state(uint8_t node, uint8_t sensor_id)
} }
} }
///// BATTERY /////
uint8_t AP_UAVCAN::find_smallest_free_bi_id()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id_taken[i] == 0) {
ret = MIN(ret, _bi_id[i]);
}
}
return ret;
}
uint8_t AP_UAVCAN::register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id) uint8_t AP_UAVCAN::register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id)
{ {
uint8_t sel_place = UINT8_MAX, ret = 0; uint8_t sel_place = UINT8_MAX, ret = 0;
@ -1311,19 +1365,6 @@ AP_UAVCAN::BatteryInfo_Info *AP_UAVCAN::find_bi_id(uint8_t id)
return nullptr; return nullptr;
} }
uint8_t AP_UAVCAN::find_smallest_free_bi_id()
{
uint8_t ret = UINT8_MAX;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BI_NUMBER; i++) {
if (_bi_id_taken[i] == 0) {
ret = MIN(ret, _bi_id[i]);
}
}
return ret;
}
void AP_UAVCAN::update_bi_state(uint8_t id) void AP_UAVCAN::update_bi_state(uint8_t id)
{ {
// Go through all listeners of specified node and call their's update methods // Go through all listeners of specified node and call their's update methods
@ -1340,50 +1381,4 @@ void AP_UAVCAN::update_bi_state(uint8_t id)
} }
} }
bool AP_UAVCAN::led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue)
{
if (_led_conf.devices_count >= AP_UAVCAN_MAX_LED_DEVICES) {
return false;
}
if (!led_out_sem_take()) {
return false;
}
// check if a device instance exists. if so, break so the instance index is remembered
uint8_t instance = 0;
for (; instance < _led_conf.devices_count; instance++) {
if (!_led_conf.devices[instance].enabled || (_led_conf.devices[instance].led_index == led_index)) {
break;
}
}
// load into the correct instance.
// if an existing instance was found in above for loop search,
// then instance value is < _led_conf.devices_count.
// otherwise a new one was just found so we increment the count.
// Either way, the correct instance is the cirrent value of instance
_led_conf.devices[instance].led_index = led_index;
_led_conf.devices[instance].red = red;
_led_conf.devices[instance].green = green;
_led_conf.devices[instance].blue = blue;
_led_conf.devices[instance].enabled = true;
if (instance == _led_conf.devices_count) {
_led_conf.devices_count++;
}
_led_conf.broadcast_enabled = true;
led_out_sem_give();
return true;
}
AP_UAVCAN *AP_UAVCAN::get_uavcan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_protocol_type(driver_index) != AP_BoardConfig_CAN::Protocol_Type_UAVCAN) {
return nullptr;
}
return static_cast<AP_UAVCAN*>(AP::can().get_driver(driver_index));
}
#endif // HAL_WITH_UAVCAN #endif // HAL_WITH_UAVCAN

View File

@ -44,7 +44,6 @@
#define AP_UAVCAN_HW_VERS_MINOR 0 #define AP_UAVCAN_HW_VERS_MINOR 0
#define AP_UAVCAN_MAX_LED_DEVICES 4 #define AP_UAVCAN_MAX_LED_DEVICES 4
#define AP_UAVCAN_LED_DELAY_MILLISECONDS 50
class AP_UAVCAN : public AP_HAL::CANProtocol { class AP_UAVCAN : public AP_HAL::CANProtocol {
public: public:
@ -53,8 +52,21 @@ public:
static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Param::GroupInfo var_info[];
// Return uavcan from @iface or nullptr if it's not ready or doesn't exist // Return uavcan from @driver_index or nullptr if it's not ready or doesn't exist
static AP_UAVCAN *get_uavcan(uint8_t iface); static AP_UAVCAN *get_uavcan(uint8_t driver_index);
void init(uint8_t driver_index) override;
///// SRV output /////
void SRV_push_servos(void);
///// LED /////
bool led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue);
///// GPS /////
uint8_t find_gps_without_listener(void);
// this function will register the listening class on a first free channel or on the specified channel // this function will register the listening class on a first free channel or on the specified channel
// if preferred_channel = 0 then free channel will be searched for // if preferred_channel = 0 then free channel will be searched for
@ -65,8 +77,6 @@ public:
uint8_t register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node); uint8_t register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node);
uint8_t find_gps_without_listener(void);
// Removes specified listener from all nodes // Removes specified listener from all nodes
void remove_gps_listener(AP_GPS_Backend* rem_listener); void remove_gps_listener(AP_GPS_Backend* rem_listener);
@ -77,6 +87,8 @@ public:
// Updates all listeners of specified node // Updates all listeners of specified node
void update_gps_state(uint8_t node); void update_gps_state(uint8_t node);
///// BARO /////
struct Baro_Info { struct Baro_Info {
float pressure; float pressure;
float pressure_variance; float pressure_variance;
@ -84,24 +96,28 @@ public:
float temperature_variance; float temperature_variance;
}; };
uint8_t find_smallest_free_baro_node();
uint8_t register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel); uint8_t register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel);
uint8_t register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node); uint8_t register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node);
void remove_baro_listener(AP_Baro_Backend* rem_listener); void remove_baro_listener(AP_Baro_Backend* rem_listener);
Baro_Info *find_baro_node(uint8_t node); Baro_Info *find_baro_node(uint8_t node);
uint8_t find_smallest_free_baro_node();
void update_baro_state(uint8_t node); void update_baro_state(uint8_t node);
///// COMPASS /////
struct Mag_Info { struct Mag_Info {
Vector3f mag_vector; Vector3f mag_vector;
}; };
uint8_t find_smallest_free_mag_node();
uint8_t register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel); uint8_t register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel);
uint8_t register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node);
void remove_mag_listener(AP_Compass_Backend* rem_listener); void remove_mag_listener(AP_Compass_Backend* rem_listener);
Mag_Info *find_mag_node(uint8_t node, uint8_t sensor_id); Mag_Info *find_mag_node(uint8_t node, uint8_t sensor_id);
uint8_t find_smallest_free_mag_node();
uint8_t register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node);
void update_mag_state(uint8_t node, uint8_t sensor_id); void update_mag_state(uint8_t node, uint8_t sensor_id);
///// BATTERY /////
struct BatteryInfo_Info { struct BatteryInfo_Info {
float temperature; float temperature;
float voltage; float voltage;
@ -111,47 +127,117 @@ public:
uint8_t status_flags; uint8_t status_flags;
}; };
uint8_t find_smallest_free_bi_id();
uint8_t register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id); uint8_t register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id);
void remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener); void remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener);
BatteryInfo_Info *find_bi_id(uint8_t id); BatteryInfo_Info *find_bi_id(uint8_t id);
uint8_t find_smallest_free_bi_id();
void update_bi_state(uint8_t id); void update_bi_state(uint8_t id);
// synchronization for RC output private:
void SRV_sem_take(); class SystemClock: public uavcan::ISystemClock, uavcan::Noncopyable {
void SRV_sem_give(); public:
SystemClock() = default;
// synchronization for LED output void adjustUtc(uavcan::UtcDuration adjustment) override {
bool led_out_sem_take(); utc_adjustment_usec = adjustment.toUSec();
void led_out_sem_give(); }
void led_out_send();
// output from do_cyclic uavcan::MonotonicTime getMonotonic() const override {
void SRV_send_servos(); return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64());
void SRV_send_esc(); }
uavcan::UtcTime getUtc() const override {
return uavcan::UtcTime::fromUSec(AP_HAL::micros64() + utc_adjustment_usec);
}
static SystemClock& instance() {
static SystemClock inst;
return inst;
}
private: private:
// ------------------------- GPS int64_t utc_adjustment_usec;
};
// This will be needed to implement if UAVCAN is used with multithreading
// Such cases will be firmware update, etc.
class RaiiSynchronizer {};
void loop(void);
///// SRV output /////
void SRV_send_actuator();
void SRV_send_esc();
///// LED /////
void led_out_send();
// UAVCAN parameters
AP_Int8 _uavcan_node;
AP_Int32 _servo_bm;
AP_Int32 _esc_bm;
AP_Int16 _servo_rate_hz;
uavcan::Node<0> *_node;
uavcan::HeapBasedPoolAllocator<UAVCAN_NODE_POOL_BLOCK_SIZE, AP_UAVCAN::RaiiSynchronizer> _node_allocator;
uint8_t _driver_index;
char _thread_name[9];
bool _initialized;
///// SRV output /////
struct {
uint16_t pulse;
bool esc_pending;
bool servo_pending;
} _SRV_conf[UAVCAN_SRV_NUMBER];
uint8_t _SRV_armed;
uint32_t _SRV_last_send_us;
AP_HAL::Semaphore *SRV_sem;
///// LED /////
struct led_device {
uint8_t led_index;
uint8_t red;
uint8_t green;
uint8_t blue;
};
struct {
led_device devices[AP_UAVCAN_MAX_LED_DEVICES];
uint8_t devices_count;
uint64_t last_update;
} _led_conf;
AP_HAL::Semaphore *_led_out_sem;
///// GPS /////
// 255 - means free node // 255 - means free node
uint8_t _gps_nodes[AP_UAVCAN_MAX_GPS_NODES]; uint8_t _gps_nodes[AP_UAVCAN_MAX_GPS_NODES];
// Counter of how many listeners are connected to this source // Counter of how many listeners are connected to this source
uint8_t _gps_node_taken[AP_UAVCAN_MAX_GPS_NODES]; uint8_t _gps_node_taken[AP_UAVCAN_MAX_GPS_NODES];
// GPS data of the sources // GPS data of the sources
AP_GPS::GPS_State _gps_node_state[AP_UAVCAN_MAX_GPS_NODES]; AP_GPS::GPS_State _gps_node_state[AP_UAVCAN_MAX_GPS_NODES];
// 255 - means no connection // 255 - means no connection
uint8_t _gps_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; uint8_t _gps_listener_to_node[AP_UAVCAN_MAX_LISTENERS];
// Listeners with callbacks to be updated // Listeners with callbacks to be updated
AP_GPS_Backend* _gps_listeners[AP_UAVCAN_MAX_LISTENERS]; AP_GPS_Backend* _gps_listeners[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- BARO ///// BARO /////
uint8_t _baro_nodes[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_nodes[AP_UAVCAN_MAX_BARO_NODES];
uint8_t _baro_node_taken[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_node_taken[AP_UAVCAN_MAX_BARO_NODES];
Baro_Info _baro_node_state[AP_UAVCAN_MAX_BARO_NODES]; Baro_Info _baro_node_state[AP_UAVCAN_MAX_BARO_NODES];
uint8_t _baro_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; uint8_t _baro_listener_to_node[AP_UAVCAN_MAX_LISTENERS];
AP_Baro_Backend* _baro_listeners[AP_UAVCAN_MAX_LISTENERS]; AP_Baro_Backend* _baro_listeners[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- MAG ///// COMPASS /////
uint8_t _mag_nodes[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_nodes[AP_UAVCAN_MAX_MAG_NODES];
uint8_t _mag_node_taken[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_node_taken[AP_UAVCAN_MAX_MAG_NODES];
Mag_Info _mag_node_state[AP_UAVCAN_MAX_MAG_NODES]; Mag_Info _mag_node_state[AP_UAVCAN_MAX_MAG_NODES];
@ -160,117 +246,12 @@ private:
AP_Compass_Backend* _mag_listeners[AP_UAVCAN_MAX_LISTENERS]; AP_Compass_Backend* _mag_listeners[AP_UAVCAN_MAX_LISTENERS];
uint8_t _mag_listener_sensor_ids[AP_UAVCAN_MAX_LISTENERS]; uint8_t _mag_listener_sensor_ids[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- BatteryInfo ///// BATTERY /////
uint16_t _bi_id[AP_UAVCAN_MAX_BI_NUMBER]; uint16_t _bi_id[AP_UAVCAN_MAX_BI_NUMBER];
uint16_t _bi_id_taken[AP_UAVCAN_MAX_BI_NUMBER]; uint16_t _bi_id_taken[AP_UAVCAN_MAX_BI_NUMBER];
BatteryInfo_Info _bi_id_state[AP_UAVCAN_MAX_BI_NUMBER]; BatteryInfo_Info _bi_id_state[AP_UAVCAN_MAX_BI_NUMBER];
uint16_t _bi_BM_listener_to_id[AP_UAVCAN_MAX_LISTENERS]; uint16_t _bi_BM_listener_to_id[AP_UAVCAN_MAX_LISTENERS];
AP_BattMonitor_Backend* _bi_BM_listeners[AP_UAVCAN_MAX_LISTENERS]; AP_BattMonitor_Backend* _bi_BM_listeners[AP_UAVCAN_MAX_LISTENERS];
struct {
uint16_t pulse;
uint16_t safety_pulse;
uint16_t failsafe_pulse;
bool esc_pending;
bool servo_pending;
} _SRV_conf[UAVCAN_SRV_NUMBER];
bool _initialized;
uint8_t _SRV_armed;
uint8_t _SRV_safety;
uint32_t _SRV_last_send_us;
typedef struct {
bool enabled;
uint8_t led_index;
uint8_t red;
uint8_t green;
uint8_t blue;
} _led_device;
struct {
bool broadcast_enabled;
_led_device devices[AP_UAVCAN_MAX_LED_DEVICES];
uint8_t devices_count;
uint64_t last_update;
} _led_conf;
AP_HAL::Semaphore *SRV_sem;
AP_HAL::Semaphore *_led_out_sem;
class SystemClock: public uavcan::ISystemClock, uavcan::Noncopyable {
SystemClock()
{
}
uavcan::UtcDuration utc_adjustment;
virtual void adjustUtc(uavcan::UtcDuration adjustment)
{
utc_adjustment = adjustment;
}
public:
virtual uavcan::MonotonicTime getMonotonic() const
{
uavcan::uint64_t usec = 0;
usec = AP_HAL::micros64();
return uavcan::MonotonicTime::fromUSec(usec);
}
virtual uavcan::UtcTime getUtc() const
{
uavcan::UtcTime utc;
uavcan::uint64_t usec = 0;
usec = AP_HAL::micros64();
utc.fromUSec(usec);
utc += utc_adjustment;
return utc;
}
static SystemClock& instance()
{
static SystemClock inst;
return inst;
}
};
uavcan::Node<0> *_node = nullptr;
uavcan::ISystemClock& get_system_clock();
uavcan::ICanDriver* get_can_driver();
uavcan::Node<0>* get_node();
// This will be needed to implement if UAVCAN is used with multithreading
// Such cases will be firmware update, etc.
class RaiiSynchronizer {
public:
RaiiSynchronizer()
{
}
~RaiiSynchronizer()
{
}
};
uavcan::HeapBasedPoolAllocator<UAVCAN_NODE_POOL_BLOCK_SIZE, AP_UAVCAN::RaiiSynchronizer> _node_allocator;
AP_Int8 _uavcan_node;
AP_Int32 _servo_bm;
AP_Int32 _esc_bm;
AP_Int16 _servo_rate_hz;
uint8_t _driver_index;
char _thread_name[9];
void loop(void);
public:
void init(uint8_t driver_index) override;
void SRV_arm_actuators(bool arm);
void SRV_write(uint16_t pulse_len, uint8_t ch);
void SRV_push_servos(void);
bool led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue);
}; };
#endif /* AP_UAVCAN_H_ */ #endif /* AP_UAVCAN_H_ */