AP_GPS: create real AP_GPS_Blended backend

This commit is contained in:
Peter Barker 2024-03-20 22:01:56 +11:00 committed by Andrew Tridgell
parent c4fe57d197
commit 39b4b80a5f
6 changed files with 240 additions and 163 deletions

View File

@ -649,12 +649,6 @@ bool AP_Arming::gps_checks(bool report)
(double)distance_m);
return false;
}
#if AP_GPS_BLENDED_ENABLED
if (!gps.blend_health_check()) {
check_failed(ARMING_CHECK_GPS, report, "GPS blending unhealthy");
return false;
}
#endif
// check AHRS and GPS are within 10m of each other
if (gps.num_sensors() > 0) {

View File

@ -29,6 +29,7 @@
#include <AP_SerialManager/AP_SerialManager.h>
#include "AP_GPS_NOVA.h"
#include "AP_GPS_Blended.h"
#include "AP_GPS_ERB.h"
#include "AP_GPS_GSOF.h"
#include "AP_GPS_NMEA.h"
@ -59,6 +60,12 @@
#include "RTCM3_Parser.h"
#endif
#if !AP_GPS_BLENDED_ENABLED
#if defined(GPS_BLENDED_INSTANCE)
#error GPS_BLENDED_INSTANCE should not be defined when AP_GPS_BLENDED_ENABLED is false
#endif
#endif
#define GPS_RTK_INJECT_TO_ALL 127
#ifndef GPS_MAX_RATE_MS
#define GPS_MAX_RATE_MS 200 // maximum value of rate_ms (i.e. slowest update rate) is 5hz or 200ms
@ -66,8 +73,6 @@
#define GPS_BAUD_TIME_MS 1200
#define GPS_TIMEOUT_MS 4000u
#define BLEND_COUNTER_FAILURE_INCREMENT 10
extern const AP_HAL::HAL &hal;
// baudrates to try to detect GPSes with
@ -347,6 +352,11 @@ void AP_GPS::init()
rate_ms.set(GPS_MAX_RATE_MS);
}
}
// create the blended instance if appropriate:
#if AP_GPS_BLENDED_ENABLED
drivers[GPS_BLENDED_INSTANCE] = NEW_NOTHROW AP_GPS_Blended(*this, params[GPS_BLENDED_INSTANCE], state[GPS_BLENDED_INSTANCE], timing[GPS_BLENDED_INSTANCE]);
#endif
}
void AP_GPS::convert_parameters()
@ -1087,25 +1097,15 @@ void AP_GPS::update_primary(void)
*/
const bool using_moving_base = is_rtk_base(0) || is_rtk_base(1);
if ((GPSAutoSwitch)_auto_switch.get() == GPSAutoSwitch::BLEND && !using_moving_base) {
_output_is_blended = calc_blend_weights();
// adjust blend health counter
if (!_output_is_blended) {
_blend_health_counter = MIN(_blend_health_counter+BLEND_COUNTER_FAILURE_INCREMENT, 100);
} else if (_blend_health_counter > 0) {
_blend_health_counter--;
}
// stop blending if unhealthy
if (_blend_health_counter >= 50) {
_output_is_blended = false;
}
_output_is_blended = ((AP_GPS_Blended*)drivers[GPS_BLENDED_INSTANCE])->calc_weights();
} else {
_output_is_blended = false;
_blend_health_counter = 0;
((AP_GPS_Blended*)drivers[GPS_BLENDED_INSTANCE])->zero_health_counter();
}
if (_output_is_blended) {
// Use the weighting to calculate blended GPS states
calc_blended_state();
((AP_GPS_Blended*)drivers[GPS_BLENDED_INSTANCE])->calc_state();
// set primary to the virtual instance
primary_instance = GPS_BLENDED_INSTANCE;
return;
@ -1698,10 +1698,7 @@ bool AP_GPS::get_lag(uint8_t instance, float &lag_sec) const
#if AP_GPS_BLENDED_ENABLED
// return lag of blended GPS
if (instance == GPS_BLENDED_INSTANCE) {
lag_sec = _blended_lag_sec;
// auto switching uses all GPS receivers, so all must be configured
uint8_t inst; // we don't actually care what the number is, but must pass it
return first_unconfigured_gps(inst);
return drivers[instance]->get_lag(lag_sec);
}
#endif
@ -1735,7 +1732,7 @@ const Vector3f &AP_GPS::get_antenna_offset(uint8_t instance) const
#if AP_GPS_BLENDED_ENABLED
if (instance == GPS_BLENDED_INSTANCE) {
// return an offset for the blended GPS solution
return _blended_antenna_offset;
return ((AP_GPS_Blended*)drivers[instance])->get_antenna_offset();
}
#endif
@ -1791,12 +1788,6 @@ bool AP_GPS::is_healthy(uint8_t instance) const
}
#endif // HAL_BUILD_AP_PERIPH
#if AP_GPS_BLENDED_ENABLED
if (instance == GPS_BLENDED_INSTANCE) {
return blend_health_check();
}
#endif
return drivers[instance] != nullptr &&
drivers[instance]->is_healthy();
}
@ -1829,6 +1820,14 @@ bool AP_GPS::pre_arm_checks(char failure_msg[], uint16_t failure_msg_len)
}
}
}
#if AP_GPS_BLENDED_ENABLED
if (!drivers[GPS_BLENDED_INSTANCE]->is_healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, "GPS blending unhealthy");
return false;
}
#endif
return true;
}

View File

@ -52,6 +52,7 @@ class RTCM3_Parser;
/// GPS driver main class
class AP_GPS
{
friend class AP_GPS_Blended;
friend class AP_GPS_ERB;
friend class AP_GPS_GSOF;
friend class AP_GPS_MAV;
@ -512,9 +513,6 @@ public:
// pre-arm check that all GPSs are close to each other. farthest distance between GPSs (in meters) is returned
bool all_consistent(float &distance) const;
// pre-arm check of GPS blending. False if blending is unhealthy, True if healthy or blending is not being used
bool blend_health_check() const;
// handle sending of initialisation strings to the GPS - only used by backends
void send_blob_start(uint8_t instance);
void send_blob_start(uint8_t instance, const char *_blob, uint16_t size);
@ -607,7 +605,7 @@ public:
protected:
// configuration parameters
Params params[GPS_MAX_RECEIVERS];
Params params[GPS_MAX_INSTANCES];
AP_Int8 _navfilter;
AP_Int8 _auto_switch;
AP_Int16 _sbp_logmask;
@ -669,7 +667,7 @@ private:
// Note allowance for an additional instance to contain blended data
GPS_timing timing[GPS_MAX_INSTANCES];
GPS_State state[GPS_MAX_INSTANCES];
AP_GPS_Backend *drivers[GPS_MAX_RECEIVERS];
AP_GPS_Backend *drivers[GPS_MAX_INSTANCES];
AP_HAL::UARTDriver *_port[GPS_MAX_RECEIVERS];
/// primary GPS instance
@ -757,18 +755,7 @@ private:
void inject_data(uint8_t instance, const uint8_t *data, uint16_t len);
#if AP_GPS_BLENDED_ENABLED
// GPS blending and switching
Vector3f _blended_antenna_offset; // blended antenna offset
float _blended_lag_sec; // blended receiver lag in seconds
float _blend_weights[GPS_MAX_RECEIVERS]; // blend weight for each GPS. The blend weights must sum to 1.0 across all instances.
bool _output_is_blended; // true when a blended GPS solution being output
uint8_t _blend_health_counter; // 0 = perfectly health, 100 = very unhealthy
// calculate the blend weight. Returns true if blend could be calculated, false if not
bool calc_blend_weights(void);
// calculate the blended state
void calc_blended_state(void);
#endif
bool should_log() const;

View File

@ -1,22 +1,20 @@
#include "AP_GPS.h"
#include "AP_GPS_config.h"
#if AP_GPS_BLENDED_ENABLED
#include "AP_GPS_Blended.h"
// defines used to specify the mask position for use of different accuracy metrics in the blending algorithm
#define BLEND_MASK_USE_HPOS_ACC 1
#define BLEND_MASK_USE_VPOS_ACC 2
#define BLEND_MASK_USE_SPD_ACC 4
// pre-arm check of GPS blending. True means healthy or that blending is not being used
bool AP_GPS::blend_health_check() const
{
return (_blend_health_counter < 50);
}
#define BLEND_COUNTER_FAILURE_INCREMENT 10
/*
calculate the weightings used to blend GPSs location and velocity data
*/
bool AP_GPS::calc_blend_weights(void)
bool AP_GPS_Blended::_calc_weights(void)
{
// zero the blend weights
memset(&_blend_weights, 0, sizeof(_blend_weights));
@ -27,7 +25,7 @@ bool AP_GPS::calc_blend_weights(void)
// The time delta calculations below also rely upon every instance being currently detected and being parsed
// exit immediately if not enough receivers to do blending
if (state[0].status <= NO_FIX || state[1].status <= NO_FIX) {
if (gps.state[0].status <= AP_GPS::NO_FIX || gps.state[1].status <= AP_GPS::NO_FIX) {
return false;
}
@ -37,22 +35,22 @@ bool AP_GPS::calc_blend_weights(void)
uint32_t max_rate_ms = 0; // largest update interval of a GPS receiver
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
// Find largest and smallest times
if (state[i].last_gps_time_ms > max_ms) {
max_ms = state[i].last_gps_time_ms;
if (gps.state[i].last_gps_time_ms > max_ms) {
max_ms = gps.state[i].last_gps_time_ms;
}
if ((state[i].last_gps_time_ms < min_ms) && (state[i].last_gps_time_ms > 0)) {
min_ms = state[i].last_gps_time_ms;
if ((gps.state[i].last_gps_time_ms < min_ms) && (gps.state[i].last_gps_time_ms > 0)) {
min_ms = gps.state[i].last_gps_time_ms;
}
max_rate_ms = MAX(get_rate_ms(i), max_rate_ms);
if (isinf(state[i].speed_accuracy) ||
isinf(state[i].horizontal_accuracy) ||
isinf(state[i].vertical_accuracy)) {
max_rate_ms = MAX(gps.get_rate_ms(i), max_rate_ms);
if (isinf(gps.state[i].speed_accuracy) ||
isinf(gps.state[i].horizontal_accuracy) ||
isinf(gps.state[i].vertical_accuracy)) {
return false;
}
}
if ((max_ms - min_ms) < (2 * max_rate_ms)) {
// data is not too delayed so use the oldest time_stamp to give a chance for data from that receiver to be updated
state[GPS_BLENDED_INSTANCE].last_gps_time_ms = min_ms;
state.last_gps_time_ms = min_ms;
} else {
// receiver data has timed out so fail out of blending
return false;
@ -60,11 +58,11 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the sum squared speed accuracy across all GPS sensors
float speed_accuracy_sum_sq = 0.0f;
if (_blend_mask & BLEND_MASK_USE_SPD_ACC) {
if (gps._blend_mask & BLEND_MASK_USE_SPD_ACC) {
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_3D) {
if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f) {
speed_accuracy_sum_sq += sq(state[i].speed_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_3D) {
if (gps.state[i].have_speed_accuracy && gps.state[i].speed_accuracy > 0.0f) {
speed_accuracy_sum_sq += sq(gps.state[i].speed_accuracy);
} else {
// not all receivers support this metric so set it to zero and don't use it
speed_accuracy_sum_sq = 0.0f;
@ -76,11 +74,11 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the sum squared horizontal position accuracy across all GPS sensors
float horizontal_accuracy_sum_sq = 0.0f;
if (_blend_mask & BLEND_MASK_USE_HPOS_ACC) {
if (gps._blend_mask & BLEND_MASK_USE_HPOS_ACC) {
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_2D) {
if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f) {
horizontal_accuracy_sum_sq += sq(state[i].horizontal_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_2D) {
if (gps.state[i].have_horizontal_accuracy && gps.state[i].horizontal_accuracy > 0.0f) {
horizontal_accuracy_sum_sq += sq(gps.state[i].horizontal_accuracy);
} else {
// not all receivers support this metric so set it to zero and don't use it
horizontal_accuracy_sum_sq = 0.0f;
@ -92,11 +90,11 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the sum squared vertical position accuracy across all GPS sensors
float vertical_accuracy_sum_sq = 0.0f;
if (_blend_mask & BLEND_MASK_USE_VPOS_ACC) {
if (gps._blend_mask & BLEND_MASK_USE_VPOS_ACC) {
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_3D) {
if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f) {
vertical_accuracy_sum_sq += sq(state[i].vertical_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_3D) {
if (gps.state[i].have_vertical_accuracy && gps.state[i].vertical_accuracy > 0.0f) {
vertical_accuracy_sum_sq += sq(gps.state[i].vertical_accuracy);
} else {
// not all receivers support this metric so set it to zero and don't use it
vertical_accuracy_sum_sq = 0.0f;
@ -121,8 +119,8 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the weights using the inverse of the variances
float sum_of_hpos_weights = 0.0f;
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_2D && state[i].horizontal_accuracy >= 0.001f) {
hpos_blend_weights[i] = horizontal_accuracy_sum_sq / sq(state[i].horizontal_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_2D && gps.state[i].horizontal_accuracy >= 0.001f) {
hpos_blend_weights[i] = horizontal_accuracy_sum_sq / sq(gps.state[i].horizontal_accuracy);
sum_of_hpos_weights += hpos_blend_weights[i];
}
}
@ -141,8 +139,8 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the weights using the inverse of the variances
float sum_of_vpos_weights = 0.0f;
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_3D && state[i].vertical_accuracy >= 0.001f) {
vpos_blend_weights[i] = vertical_accuracy_sum_sq / sq(state[i].vertical_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_3D && gps.state[i].vertical_accuracy >= 0.001f) {
vpos_blend_weights[i] = vertical_accuracy_sum_sq / sq(gps.state[i].vertical_accuracy);
sum_of_vpos_weights += vpos_blend_weights[i];
}
}
@ -161,8 +159,8 @@ bool AP_GPS::calc_blend_weights(void)
// calculate the weights using the inverse of the variances
float sum_of_spd_weights = 0.0f;
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (state[i].status >= GPS_OK_FIX_3D && state[i].speed_accuracy >= 0.001f) {
spd_blend_weights[i] = speed_accuracy_sum_sq / sq(state[i].speed_accuracy);
if (gps.state[i].status >= AP_GPS::GPS_OK_FIX_3D && gps.state[i].speed_accuracy >= 0.001f) {
spd_blend_weights[i] = speed_accuracy_sum_sq / sq(gps.state[i].speed_accuracy);
sum_of_spd_weights += spd_blend_weights[i];
}
}
@ -187,104 +185,116 @@ bool AP_GPS::calc_blend_weights(void)
return true;
}
bool AP_GPS_Blended::calc_weights()
{
// adjust blend health counter
if (!_calc_weights()) {
_blend_health_counter = MIN(_blend_health_counter+BLEND_COUNTER_FAILURE_INCREMENT, 100);
} else if (_blend_health_counter > 0) {
_blend_health_counter--;
}
// stop blending if unhealthy
return _blend_health_counter < 50;
}
/*
calculate a blended GPS state
*/
void AP_GPS::calc_blended_state(void)
void AP_GPS_Blended::calc_state(void)
{
// initialise the blended states so we can accumulate the results using the weightings for each GPS receiver
state[GPS_BLENDED_INSTANCE].instance = GPS_BLENDED_INSTANCE;
state[GPS_BLENDED_INSTANCE].status = NO_FIX;
state[GPS_BLENDED_INSTANCE].time_week_ms = 0;
state[GPS_BLENDED_INSTANCE].time_week = 0;
state[GPS_BLENDED_INSTANCE].ground_speed = 0.0f;
state[GPS_BLENDED_INSTANCE].ground_course = 0.0f;
state[GPS_BLENDED_INSTANCE].hdop = GPS_UNKNOWN_DOP;
state[GPS_BLENDED_INSTANCE].vdop = GPS_UNKNOWN_DOP;
state[GPS_BLENDED_INSTANCE].num_sats = 0;
state[GPS_BLENDED_INSTANCE].velocity.zero();
state[GPS_BLENDED_INSTANCE].speed_accuracy = 1e6f;
state[GPS_BLENDED_INSTANCE].horizontal_accuracy = 1e6f;
state[GPS_BLENDED_INSTANCE].vertical_accuracy = 1e6f;
state[GPS_BLENDED_INSTANCE].have_vertical_velocity = false;
state[GPS_BLENDED_INSTANCE].have_speed_accuracy = false;
state[GPS_BLENDED_INSTANCE].have_horizontal_accuracy = false;
state[GPS_BLENDED_INSTANCE].have_vertical_accuracy = false;
state[GPS_BLENDED_INSTANCE].location = {};
state.instance = GPS_BLENDED_INSTANCE;
state.status = AP_GPS::NO_FIX;
state.time_week_ms = 0;
state.time_week = 0;
state.ground_speed = 0.0f;
state.ground_course = 0.0f;
state.hdop = GPS_UNKNOWN_DOP;
state.vdop = GPS_UNKNOWN_DOP;
state.num_sats = 0;
state.velocity.zero();
state.speed_accuracy = 1e6f;
state.horizontal_accuracy = 1e6f;
state.vertical_accuracy = 1e6f;
state.have_vertical_velocity = false;
state.have_speed_accuracy = false;
state.have_horizontal_accuracy = false;
state.have_vertical_accuracy = false;
state.location = {};
_blended_antenna_offset.zero();
_blended_lag_sec = 0;
#if HAL_LOGGING_ENABLED
const uint32_t last_blended_message_time_ms = timing[GPS_BLENDED_INSTANCE].last_message_time_ms;
const uint32_t last_blended_message_time_ms = timing.last_message_time_ms;
#endif
timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = 0;
timing[GPS_BLENDED_INSTANCE].last_message_time_ms = 0;
timing.last_fix_time_ms = 0;
timing.last_message_time_ms = 0;
if (state[0].have_undulation) {
state[GPS_BLENDED_INSTANCE].have_undulation = true;
state[GPS_BLENDED_INSTANCE].undulation = state[0].undulation;
} else if (state[1].have_undulation) {
state[GPS_BLENDED_INSTANCE].have_undulation = true;
state[GPS_BLENDED_INSTANCE].undulation = state[1].undulation;
if (gps.state[0].have_undulation) {
state.have_undulation = true;
state.undulation = gps.state[0].undulation;
} else if (gps.state[1].have_undulation) {
state.have_undulation = true;
state.undulation = gps.state[1].undulation;
} else {
state[GPS_BLENDED_INSTANCE].have_undulation = false;
state.have_undulation = false;
}
// combine the states into a blended solution
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
// use the highest status
if (state[i].status > state[GPS_BLENDED_INSTANCE].status) {
state[GPS_BLENDED_INSTANCE].status = state[i].status;
if (gps.state[i].status > state.status) {
state.status = gps.state[i].status;
}
// calculate a blended average velocity
state[GPS_BLENDED_INSTANCE].velocity += state[i].velocity * _blend_weights[i];
state.velocity += gps.state[i].velocity * _blend_weights[i];
// report the best valid accuracies and DOP metrics
if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f && state[i].horizontal_accuracy < state[GPS_BLENDED_INSTANCE].horizontal_accuracy) {
state[GPS_BLENDED_INSTANCE].have_horizontal_accuracy = true;
state[GPS_BLENDED_INSTANCE].horizontal_accuracy = state[i].horizontal_accuracy;
if (gps.state[i].have_horizontal_accuracy && gps.state[i].horizontal_accuracy > 0.0f && gps.state[i].horizontal_accuracy < state.horizontal_accuracy) {
state.have_horizontal_accuracy = true;
state.horizontal_accuracy = gps.state[i].horizontal_accuracy;
}
if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f && state[i].vertical_accuracy < state[GPS_BLENDED_INSTANCE].vertical_accuracy) {
state[GPS_BLENDED_INSTANCE].have_vertical_accuracy = true;
state[GPS_BLENDED_INSTANCE].vertical_accuracy = state[i].vertical_accuracy;
if (gps.state[i].have_vertical_accuracy && gps.state[i].vertical_accuracy > 0.0f && gps.state[i].vertical_accuracy < state.vertical_accuracy) {
state.have_vertical_accuracy = true;
state.vertical_accuracy = gps.state[i].vertical_accuracy;
}
if (state[i].have_vertical_velocity) {
state[GPS_BLENDED_INSTANCE].have_vertical_velocity = true;
if (gps.state[i].have_vertical_velocity) {
state.have_vertical_velocity = true;
}
if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f && state[i].speed_accuracy < state[GPS_BLENDED_INSTANCE].speed_accuracy) {
state[GPS_BLENDED_INSTANCE].have_speed_accuracy = true;
state[GPS_BLENDED_INSTANCE].speed_accuracy = state[i].speed_accuracy;
if (gps.state[i].have_speed_accuracy && gps.state[i].speed_accuracy > 0.0f && gps.state[i].speed_accuracy < state.speed_accuracy) {
state.have_speed_accuracy = true;
state.speed_accuracy = gps.state[i].speed_accuracy;
}
if (state[i].hdop > 0 && state[i].hdop < state[GPS_BLENDED_INSTANCE].hdop) {
state[GPS_BLENDED_INSTANCE].hdop = state[i].hdop;
if (gps.state[i].hdop > 0 && gps.state[i].hdop < state.hdop) {
state.hdop = gps.state[i].hdop;
}
if (state[i].vdop > 0 && state[i].vdop < state[GPS_BLENDED_INSTANCE].vdop) {
state[GPS_BLENDED_INSTANCE].vdop = state[i].vdop;
if (gps.state[i].vdop > 0 && gps.state[i].vdop < state.vdop) {
state.vdop = gps.state[i].vdop;
}
if (state[i].num_sats > 0 && state[i].num_sats > state[GPS_BLENDED_INSTANCE].num_sats) {
state[GPS_BLENDED_INSTANCE].num_sats = state[i].num_sats;
if (gps.state[i].num_sats > 0 && gps.state[i].num_sats > state.num_sats) {
state.num_sats = gps.state[i].num_sats;
}
// report a blended average GPS antenna position
Vector3f temp_antenna_offset = params[i].antenna_offset;
Vector3f temp_antenna_offset = gps.params[i].antenna_offset;
temp_antenna_offset *= _blend_weights[i];
_blended_antenna_offset += temp_antenna_offset;
// blend the timing data
if (timing[i].last_fix_time_ms > timing[GPS_BLENDED_INSTANCE].last_fix_time_ms) {
timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = timing[i].last_fix_time_ms;
if (gps.timing[i].last_fix_time_ms > timing.last_fix_time_ms) {
timing.last_fix_time_ms = gps.timing[i].last_fix_time_ms;
}
if (timing[i].last_message_time_ms > timing[GPS_BLENDED_INSTANCE].last_message_time_ms) {
timing[GPS_BLENDED_INSTANCE].last_message_time_ms = timing[i].last_message_time_ms;
if (gps.timing[i].last_message_time_ms > timing.last_message_time_ms) {
timing.last_message_time_ms = gps.timing[i].last_message_time_ms;
}
}
@ -300,7 +310,7 @@ void AP_GPS::calc_blended_state(void)
if (_blend_weights[i] > best_weight) {
best_weight = _blend_weights[i];
best_index = i;
state[GPS_BLENDED_INSTANCE].location = state[i].location;
state.location = gps.state[i].location;
}
}
@ -310,18 +320,18 @@ void AP_GPS::calc_blended_state(void)
blended_NE_offset_m.zero();
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (_blend_weights[i] > 0.0f && i != best_index) {
blended_NE_offset_m += state[GPS_BLENDED_INSTANCE].location.get_distance_NE(state[i].location) * _blend_weights[i];
blended_alt_offset_cm += (float)(state[i].location.alt - state[GPS_BLENDED_INSTANCE].location.alt) * _blend_weights[i];
blended_NE_offset_m += state.location.get_distance_NE(gps.state[i].location) * _blend_weights[i];
blended_alt_offset_cm += (float)(gps.state[i].location.alt - state.location.alt) * _blend_weights[i];
}
}
// Add the sum of weighted offsets to the reference location to obtain the blended location
state[GPS_BLENDED_INSTANCE].location.offset(blended_NE_offset_m.x, blended_NE_offset_m.y);
state[GPS_BLENDED_INSTANCE].location.alt += (int)blended_alt_offset_cm;
state.location.offset(blended_NE_offset_m.x, blended_NE_offset_m.y);
state.location.alt += (int)blended_alt_offset_cm;
// Calculate ground speed and course from blended velocity vector
state[GPS_BLENDED_INSTANCE].ground_speed = state[GPS_BLENDED_INSTANCE].velocity.xy().length();
state[GPS_BLENDED_INSTANCE].ground_course = wrap_360(degrees(atan2f(state[GPS_BLENDED_INSTANCE].velocity.y, state[GPS_BLENDED_INSTANCE].velocity.x)));
state.ground_speed = state.velocity.xy().length();
state.ground_course = wrap_360(degrees(atan2f(state.velocity.y, state.velocity.x)));
// If the GPS week is the same then use a blended time_week_ms
// If week is different, then use time stamp from GPS with largest weighting
@ -331,8 +341,8 @@ void AP_GPS::calc_blended_state(void)
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (last_week_instance == 0 && _blend_weights[i] > 0) {
// this is our first valid sensor week data
last_week_instance = state[i].time_week;
} else if (last_week_instance != 0 && _blend_weights[i] > 0 && last_week_instance != state[i].time_week) {
last_week_instance = gps.state[i].time_week;
} else if (last_week_instance != 0 && _blend_weights[i] > 0 && last_week_instance != gps.state[i].time_week) {
// there is valid sensor week data that is inconsistent
weeks_consistent = false;
}
@ -340,19 +350,19 @@ void AP_GPS::calc_blended_state(void)
// calculate output
if (!weeks_consistent) {
// use data from highest weighted sensor
state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week;
state[GPS_BLENDED_INSTANCE].time_week_ms = state[best_index].time_week_ms;
state.time_week = gps.state[best_index].time_week;
state.time_week_ms = gps.state[best_index].time_week_ms;
} else {
// use week number from highest weighting GPS (they should all have the same week number)
state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week;
state.time_week = gps.state[best_index].time_week;
// calculate a blended value for the number of ms lapsed in the week
double temp_time_0 = 0.0;
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (_blend_weights[i] > 0.0f) {
temp_time_0 += (double)state[i].time_week_ms * (double)_blend_weights[i];
temp_time_0 += (double)gps.state[i].time_week_ms * (double)_blend_weights[i];
}
}
state[GPS_BLENDED_INSTANCE].time_week_ms = (uint32_t)temp_time_0;
state.time_week_ms = (uint32_t)temp_time_0;
}
// calculate a blended value for the timing data and lag
@ -360,21 +370,30 @@ void AP_GPS::calc_blended_state(void)
double temp_time_2 = 0.0;
for (uint8_t i=0; i<GPS_MAX_RECEIVERS; i++) {
if (_blend_weights[i] > 0.0f) {
temp_time_1 += (double)timing[i].last_fix_time_ms * (double) _blend_weights[i];
temp_time_2 += (double)timing[i].last_message_time_ms * (double)_blend_weights[i];
temp_time_1 += (double)gps.timing[i].last_fix_time_ms * (double) _blend_weights[i];
temp_time_2 += (double)gps.timing[i].last_message_time_ms * (double)_blend_weights[i];
float gps_lag_sec = 0;
get_lag(i, gps_lag_sec);
gps.get_lag(i, gps_lag_sec);
_blended_lag_sec += gps_lag_sec * _blend_weights[i];
}
}
timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = (uint32_t)temp_time_1;
timing[GPS_BLENDED_INSTANCE].last_message_time_ms = (uint32_t)temp_time_2;
timing.last_fix_time_ms = (uint32_t)temp_time_1;
timing.last_message_time_ms = (uint32_t)temp_time_2;
#if HAL_LOGGING_ENABLED
if (timing[GPS_BLENDED_INSTANCE].last_message_time_ms > last_blended_message_time_ms &&
if (timing.last_message_time_ms > last_blended_message_time_ms &&
should_log()) {
Write_GPS(GPS_BLENDED_INSTANCE);
gps.Write_GPS(GPS_BLENDED_INSTANCE);
}
#endif
}
bool AP_GPS_Blended::get_lag(float &lag_sec) const
{
lag_sec = _blended_lag_sec;
// auto switching uses all GPS receivers, so all must be configured
uint8_t inst; // we don't actually care what the number is, but must pass it
return gps.first_unconfigured_gps(inst);
}
#endif // AP_GPS_BLENDED_ENABLED

View File

@ -0,0 +1,74 @@
#pragma once
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "AP_GPS_config.h"
#if AP_GPS_BLENDED_ENABLED
#include "AP_GPS.h"
#include "GPS_Backend.h"
class AP_GPS_Blended : public AP_GPS_Backend
{
public:
AP_GPS_Blended(AP_GPS &_gps, AP_GPS::Params &_params, AP_GPS::GPS_State &_state, class AP_GPS::GPS_timing &_timing) :
AP_GPS_Backend(_gps, _params, _state, nullptr),
timing{_timing}
{ }
// pre-arm check of GPS blending. False if blending is unhealthy,
// True if healthy or blending is not being used
bool is_healthy() const override {
return (_blend_health_counter < 50);
}
bool read() override { return true; }
const char *name() const override { return "Blended"; }
bool get_lag(float &lag_sec) const override;
const Vector3f &get_antenna_offset() const {
return _blended_antenna_offset;
}
// calculate the blend weight. Returns true if blend could be
// calculated, false if not
bool calc_weights(void);
// calculate the blended state
void calc_state(void);
void zero_health_counter() {
_blend_health_counter = 0;
}
private:
// GPS blending and switching
Vector3f _blended_antenna_offset; // blended antenna offset
float _blended_lag_sec; // blended receiver lag in seconds
float _blend_weights[GPS_MAX_RECEIVERS]; // blend weight for each GPS. The blend weights must sum to 1.0 across all instances.
bool _output_is_blended; // true when a blended GPS solution being output
uint8_t _blend_health_counter; // 0 = perfectly health, 100 = very unhealthy
AP_GPS::GPS_timing &timing;
bool _calc_weights(void);
};
#endif // AP_GPS_BLENDED_ENABLED

View File

@ -15,6 +15,7 @@
#ifndef GPS_MAX_RECEIVERS
#define GPS_MAX_RECEIVERS 2 // maximum number of physical GPS sensors allowed - does not include virtual GPS created by blending receiver data
#endif
#if !defined(GPS_MAX_INSTANCES)
#if GPS_MAX_RECEIVERS > 1
#define GPS_MAX_INSTANCES (GPS_MAX_RECEIVERS + 1) // maximum number of GPS instances including the 'virtual' GPS created by blending receiver data
@ -26,18 +27,21 @@
#if GPS_MAX_RECEIVERS <= 1 && GPS_MAX_INSTANCES > 1
#error "GPS_MAX_INSTANCES should be 1 for GPS_MAX_RECEIVERS <= 1"
#endif
#if GPS_MAX_INSTANCES > GPS_MAX_RECEIVERS
#define GPS_BLENDED_INSTANCE GPS_MAX_RECEIVERS // the virtual blended GPS is always the highest instance (2)
#endif
#endif
#ifndef AP_GPS_BACKEND_DEFAULT_ENABLED
#define AP_GPS_BACKEND_DEFAULT_ENABLED AP_GPS_ENABLED
#endif
#if !defined(AP_GPS_BLENDED_ENABLED) && defined(GPS_MAX_INSTANCES)
#define AP_GPS_BLENDED_ENABLED AP_GPS_BACKEND_DEFAULT_ENABLED && GPS_MAX_INSTANCES > GPS_MAX_RECEIVERS
#if AP_GPS_BLENDED_ENABLED
#define GPS_BLENDED_INSTANCE GPS_MAX_RECEIVERS // the virtual blended GPS is always the highest instance (2)
#endif
#endif
#ifndef AP_GPS_BLENDED_ENABLED
#define AP_GPS_BLENDED_ENABLED AP_GPS_BACKEND_DEFAULT_ENABLED && defined(GPS_BLENDED_INSTANCE)
#define AP_GPS_BLENDED_ENABLED 0
#endif
#ifndef AP_GPS_DRONECAN_ENABLED