AP_CheckFirmware: allow an unsigned bootloader to boot a signed firmware

this is important to provide an upgrade path for AP_Periph from
unsigned to signed. It means a bootloader with no public keys can
still check the board ID and CRCs of the signed firmware
This commit is contained in:
Andrew Tridgell 2022-09-03 12:21:51 +10:00
parent bf511640cf
commit 39595d36be
3 changed files with 192 additions and 83 deletions

View File

@ -16,17 +16,37 @@
const struct ap_secure_data public_keys __attribute__((section(".ecc_raw")));
/*
return true if all public keys are zero. We allow boot of an
unsigned firmware in that case
*/
static bool all_zero_public_keys(void)
{
/*
look over all public keys, if one matches then we are OK
*/
const uint8_t zero_key[AP_PUBLIC_KEY_LEN] {};
for (const auto &public_key : public_keys.public_key) {
if (memcmp(public_key.key, zero_key, AP_PUBLIC_KEY_LEN) != 0) {
return false;
}
}
return true;
}
/*
check a signature against bootloader keys
*/
static check_fw_result_t check_firmware_signature(const app_descriptor *ad,
static check_fw_result_t check_firmware_signature(const app_descriptor_signed *ad,
const uint8_t *flash1, uint32_t len1,
const uint8_t *flash2, uint32_t len2)
{
if (all_zero_public_keys()) {
return check_fw_result_t::CHECK_FW_OK;
}
// 8 byte signature version
static const uint64_t sig_version = 30437LLU;
const uint8_t zero_key[AP_PUBLIC_KEY_LEN] {};
if (ad->signature_length != 72) {
return check_fw_result_t::FAIL_REASON_BAD_FIRMWARE_SIGNATURE;
}
@ -34,16 +54,10 @@ static check_fw_result_t check_firmware_signature(const app_descriptor *ad,
return check_fw_result_t::FAIL_REASON_BAD_FIRMWARE_SIGNATURE;
}
bool all_zero_keys = true;
/*
look over all public keys, if one matches then we are OK
*/
for (const auto &public_key : public_keys.public_key) {
if (memcmp(public_key.key, zero_key, AP_PUBLIC_KEY_LEN) == 0) {
continue;
}
all_zero_keys = false;
crypto_check_ctx ctx {};
crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx;
crypto_check_init(actx, &ad->signature[sizeof(sig_version)], public_key.key);
@ -56,11 +70,6 @@ static check_fw_result_t check_firmware_signature(const app_descriptor *ad,
}
}
if (all_zero_keys) {
// bootloader is unlocked if it has no public keys
return check_fw_result_t::CHECK_FW_OK;
}
// none of the public keys matched
return check_fw_result_t::FAIL_REASON_VERIFICATION;
}
@ -69,16 +78,12 @@ static check_fw_result_t check_firmware_signature(const app_descriptor *ad,
/*
check firmware CRC and board ID to see if it matches
*/
check_fw_result_t check_good_firmware(void)
static check_fw_result_t check_good_firmware_signed(void)
{
#if AP_SIGNED_FIRMWARE
const uint8_t sig[8] = { 0x41, 0xa3, 0xe5, 0xf2, 0x65, 0x69, 0x92, 0x07 };
#else
const uint8_t sig[8] = { 0x40, 0xa2, 0xe4, 0xf1, 0x64, 0x68, 0x91, 0x06 };
#endif
const uint8_t sig[8] = AP_APP_DESCRIPTOR_SIGNATURE_SIGNED;
const uint8_t *flash1 = (const uint8_t *)(FLASH_LOAD_ADDRESS + (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB)*1024);
const uint32_t flash_size = (BOARD_FLASH_SIZE - (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB))*1024;
const app_descriptor *ad = (const app_descriptor *)memmem(flash1, flash_size-sizeof(app_descriptor), sig, sizeof(sig));
const app_descriptor_signed *ad = (const app_descriptor_signed *)memmem(flash1, flash_size-sizeof(app_descriptor_signed), sig, sizeof(sig));
if (ad == nullptr) {
// no application signature
return check_fw_result_t::FAIL_REASON_NO_APP_SIG;
@ -98,7 +103,7 @@ check_fw_result_t check_good_firmware(void)
}
const uint8_t *flash2 = (const uint8_t *)&ad->version_major;
const uint8_t desc_len = offsetof(app_descriptor, version_major) - offsetof(app_descriptor, image_crc1);
const uint8_t desc_len = offsetof(app_descriptor_signed, version_major) - offsetof(app_descriptor_signed, image_crc1);
const uint32_t len1 = ((const uint8_t *)&ad->image_crc1) - flash1;
if ((len1 + desc_len) > ad->image_size) {
@ -120,6 +125,79 @@ check_fw_result_t check_good_firmware(void)
return ret;
}
/*
check firmware CRC and board ID to see if it matches, using unsigned
signature
*/
static check_fw_result_t check_good_firmware_unsigned(void)
{
const uint8_t sig[8] = AP_APP_DESCRIPTOR_SIGNATURE_UNSIGNED;
const uint8_t *flash1 = (const uint8_t *)(FLASH_LOAD_ADDRESS + (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB)*1024);
const uint32_t flash_size = (BOARD_FLASH_SIZE - (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB))*1024;
const app_descriptor_unsigned *ad = (const app_descriptor_unsigned *)memmem(flash1, flash_size-sizeof(app_descriptor_unsigned), sig, sizeof(sig));
if (ad == nullptr) {
// no application signature
return check_fw_result_t::FAIL_REASON_NO_APP_SIG;
}
// check length
if (ad->image_size > flash_size) {
return check_fw_result_t::FAIL_REASON_BAD_LENGTH_APP;
}
bool id_ok = (ad->board_id == APJ_BOARD_ID);
#ifdef ALT_BOARD_ID
id_ok |= (ad->board_id == ALT_BOARD_ID);
#endif
if (!id_ok) {
return check_fw_result_t::FAIL_REASON_BAD_BOARD_ID;
}
const uint8_t *flash2 = (const uint8_t *)&ad->version_major;
const uint8_t desc_len = offsetof(app_descriptor_unsigned, version_major) - offsetof(app_descriptor_unsigned, image_crc1);
const uint32_t len1 = ((const uint8_t *)&ad->image_crc1) - flash1;
if ((len1 + desc_len) > ad->image_size) {
return check_fw_result_t::FAIL_REASON_BAD_LENGTH_DESCRIPTOR;
}
const uint32_t len2 = ad->image_size - (len1 + desc_len);
uint32_t crc1 = crc32_small(0, flash1, len1);
uint32_t crc2 = crc32_small(0, flash2, len2);
if (crc1 != ad->image_crc1 || crc2 != ad->image_crc2) {
return check_fw_result_t::FAIL_REASON_BAD_CRC;
}
return check_fw_result_t::CHECK_FW_OK;
}
check_fw_result_t check_good_firmware(void)
{
#if AP_SIGNED_FIRMWARE
// allow unsigned format if we have no public keys. This allows
// for use of SECURE_COMMAND to remove all public keys and then
// load of unsigned firmware
const auto ret = check_good_firmware_signed();
if (ret != check_fw_result_t::CHECK_FW_OK &&
all_zero_public_keys() &&
check_good_firmware_unsigned() == check_fw_result_t::CHECK_FW_OK) {
return check_fw_result_t::CHECK_FW_OK;
}
return ret;
#else
const auto ret = check_good_firmware_unsigned();
if (ret != check_fw_result_t::CHECK_FW_OK) {
// allow for signed format, not checking public keys. This
// allows for booting of a signed firmware with an unsigned
// bootloader, which allows for bootstrapping a system up from
// unsigned to signed
return check_good_firmware_signed();
}
return ret;
#endif
}
#endif // HAL_BOOTLOADER_BUILD
#if !defined(HAL_BOOTLOADER_BUILD)
@ -128,11 +206,11 @@ extern const AP_HAL::HAL &hal;
/*
declare constant app_descriptor in flash
*/
extern const struct app_descriptor app_descriptor;
extern const app_descriptor_t app_descriptor;
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
const struct app_descriptor app_descriptor __attribute__((section(".app_descriptor")));
const app_descriptor_t app_descriptor __attribute__((section(".app_descriptor")));
#else
const struct app_descriptor app_descriptor;
const app_descriptor_t app_descriptor;
#endif
/*

View File

@ -47,13 +47,16 @@ enum class check_fw_result_t : uint8_t {
by the bootloader to confirm that the firmware is not corrupt and is
suitable for this board. The build dependent values in this structure
are filled in by set_app_descriptor() in the waf build
Note that we need to define both structures to make it possible to
boot a signed firmware using a bootloader setup for unsigned
*/
struct app_descriptor {
#if AP_SIGNED_FIRMWARE
uint8_t sig[8] = { 0x41, 0xa3, 0xe5, 0xf2, 0x65, 0x69, 0x92, 0x07 };
#else
uint8_t sig[8] = { 0x40, 0xa2, 0xe4, 0xf1, 0x64, 0x68, 0x91, 0x06 };
#endif
#define AP_APP_DESCRIPTOR_SIGNATURE_SIGNED { 0x41, 0xa3, 0xe5, 0xf2, 0x65, 0x69, 0x92, 0x07 }
#define AP_APP_DESCRIPTOR_SIGNATURE_UNSIGNED { 0x40, 0xa2, 0xe4, 0xf1, 0x64, 0x68, 0x91, 0x06 }
struct app_descriptor_unsigned {
uint8_t sig[8] = AP_APP_DESCRIPTOR_SIGNATURE_UNSIGNED;
// crc1 is the crc32 from firmware start to start of image_crc1
uint32_t image_crc1 = 0;
// crc2 is the crc32 from the start of version_major to the end of the firmware
@ -62,11 +65,6 @@ struct app_descriptor {
uint32_t image_size = 0;
uint32_t git_hash = 0;
#if AP_SIGNED_FIRMWARE
// firmware signature
uint32_t signature_length = 0;
uint8_t signature[72] = {};
#endif
// software version number
uint8_t version_major = APP_FW_MAJOR;
uint8_t version_minor = APP_FW_MINOR;
@ -74,16 +72,42 @@ struct app_descriptor {
// with high byte in HardwareVersion.major and low byte in HardwareVersion.minor
uint16_t board_id = APJ_BOARD_ID;
uint8_t reserved[8] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
};
struct app_descriptor_signed {
uint8_t sig[8] = AP_APP_DESCRIPTOR_SIGNATURE_SIGNED;
// crc1 is the crc32 from firmware start to start of image_crc1
uint32_t image_crc1 = 0;
// crc2 is the crc32 from the start of version_major to the end of the firmware
uint32_t image_crc2 = 0;
// total size of firmware image in bytes
uint32_t image_size = 0;
uint32_t git_hash = 0;
// firmware signature
uint32_t signature_length = 0;
uint8_t signature[72] = {};
// software version number
uint8_t version_major = APP_FW_MAJOR;
uint8_t version_minor = APP_FW_MINOR;
// APJ_BOARD_ID (hardware version). This is also used in CAN NodeInfo
// with high byte in HardwareVersion.major and low byte in HardwareVersion.minor
uint16_t board_id = APJ_BOARD_ID;
uint8_t reserved[8] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
};
#if AP_SIGNED_FIRMWARE
#define APP_DESCRIPTOR_TOTAL_LENGTH (36+72+4)
typedef struct app_descriptor_signed app_descriptor_t;
#else
#define APP_DESCRIPTOR_TOTAL_LENGTH 36
typedef struct app_descriptor_unsigned app_descriptor_t;
#endif
static_assert(sizeof(app_descriptor) == APP_DESCRIPTOR_TOTAL_LENGTH, "app_descriptor incorrect length");
#define APP_DESCRIPTOR_UNSIGNED_TOTAL_LENGTH 36
#define APP_DESCRIPTOR_SIGNED_TOTAL_LENGTH (APP_DESCRIPTOR_UNSIGNED_TOTAL_LENGTH+72+4)
static_assert(sizeof(app_descriptor_unsigned) == APP_DESCRIPTOR_UNSIGNED_TOTAL_LENGTH, "app_descriptor_unsigned incorrect length");
static_assert(sizeof(app_descriptor_signed) == APP_DESCRIPTOR_SIGNED_TOTAL_LENGTH, "app_descriptor_signed incorrect length");
#if AP_SIGNED_FIRMWARE
@ -104,13 +128,14 @@ check_fw_result_t check_good_firmware(void);
#else
void check_firmware_print(void);
#ifdef HAL_GCS_ENABLED
class AP_CheckFirmware {
public:
#if HAL_GCS_ENABLED
// handle a message from the GCS. This is static as we don't have an AP_CheckFirmware object
static void handle_msg(mavlink_channel_t chan, const mavlink_message_t &msg);
static void handle_secure_command(mavlink_channel_t chan, const mavlink_secure_command_t &pkt);
static bool check_signature(const mavlink_secure_command_t &pkt);
#endif
static const struct ap_secure_data *find_public_keys(void);
/*
@ -138,9 +163,10 @@ public:
static bool check_signed_bootloader(const uint8_t *fw, uint32_t fw_size);
private:
#if HAL_GCS_ENABLED
static uint8_t session_key[8];
};
#endif
};
#endif // HAL_BOOTLOADER_BUILD

View File

@ -11,31 +11,6 @@
extern const AP_HAL::HAL &hal;
uint8_t AP_CheckFirmware::session_key[8];
/*
make a session key
*/
static void make_session_key(uint8_t key[8])
{
struct {
uint32_t time_us;
uint8_t unique_id[12];
uint16_t rand1;
uint16_t rand2;
} data {};
static_assert(sizeof(data) % 4 == 0, "data must be multiple of 4 bytes");
// get data which will not apply on a different board, and includes some randomness
uint8_t uid_len = 12;
hal.util->get_system_id_unformatted(data.unique_id, uid_len);
data.time_us = AP_HAL::micros();
data.rand1 = get_random16();
data.rand2 = get_random16();
const uint64_t c64 = crc_crc64((const uint32_t *)&data, sizeof(data)/sizeof(uint32_t));
memcpy(key, (uint8_t *)&c64, 8);
}
/*
find public keys in bootloader, or return NULL if signature not found
@ -54,6 +29,24 @@ const struct ap_secure_data *AP_CheckFirmware::find_public_keys(void)
#endif
}
/*
return true if all keys are zeros
*/
bool AP_CheckFirmware::all_zero_keys(const struct ap_secure_data *sec_data)
{
const uint8_t zero_key[AP_PUBLIC_KEY_LEN] {};
/*
look over all public keys, if one matches then we are OK
*/
for (const auto &public_key : sec_data->public_key) {
if (memcmp(public_key.key, zero_key, AP_PUBLIC_KEY_LEN) != 0) {
return false;
}
}
return true;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
/*
return true if 1k of data is all 0xff (empty flash)
@ -134,6 +127,33 @@ AP_CheckFirmware::bl_data *AP_CheckFirmware::read_bootloader(void)
#endif
}
#if HAL_GCS_ENABLED
uint8_t AP_CheckFirmware::session_key[8];
/*
make a session key
*/
static void make_session_key(uint8_t key[8])
{
struct {
uint32_t time_us;
uint8_t unique_id[12];
uint16_t rand1;
uint16_t rand2;
} data {};
static_assert(sizeof(data) % 4 == 0, "data must be multiple of 4 bytes");
// get data which will not apply on a different board, and includes some randomness
uint8_t uid_len = 12;
hal.util->get_system_id_unformatted(data.unique_id, uid_len);
data.time_us = AP_HAL::micros();
data.rand1 = get_random16();
data.rand2 = get_random16();
const uint64_t c64 = crc_crc64((const uint32_t *)&data, sizeof(data)/sizeof(uint32_t));
memcpy(key, (uint8_t *)&c64, 8);
}
/*
write bootloader from memory
*/
@ -163,23 +183,6 @@ bool AP_CheckFirmware::write_bootloader(const struct bl_data *bld)
#endif
}
/*
return true if all keys are zeros
*/
bool AP_CheckFirmware::all_zero_keys(const struct ap_secure_data *sec_data)
{
const uint8_t zero_key[AP_PUBLIC_KEY_LEN] {};
/*
look over all public keys, if one matches then we are OK
*/
for (const auto &public_key : sec_data->public_key) {
if (memcmp(public_key.key, zero_key, AP_PUBLIC_KEY_LEN) != 0) {
return false;
}
}
return true;
}
/*
check signature in a command against bootloader public keys
*/
@ -394,6 +397,8 @@ void AP_CheckFirmware::handle_msg(mavlink_channel_t chan, const mavlink_message_
}
}
#endif // HAL_GCS_ENABLED
/*
check that a bootloader is OK to flash. We don't want to allow
flashing of a bootloader unless we either have no public keys setup