purple: rework APM_RC library for purple hardware

this splits the APM_RC class into instances for purple and APM1, and
adds example sketches for both
This commit is contained in:
Pat Hickey 2011-11-13 13:57:42 +11:00
parent 89d2f0f849
commit 36346fd86b
9 changed files with 599 additions and 263 deletions

View File

@ -1,9 +1,7 @@
#ifndef APM_RC_h #ifndef __APM_RC_H__
#define APM_RC_h #define __APM_RC_H__
#define NUM_CHANNELS 8 #include <inttypes.h>
#define MIN_PULSEWIDTH 900
#define MAX_PULSEWIDTH 2100
// Radio channels // Radio channels
// Note channels are from 0! // Note channels are from 0!
@ -15,30 +13,23 @@
#define CH_6 5 #define CH_6 5
#define CH_7 6 #define CH_7 6
#define CH_8 7 #define CH_8 7
#define CH_10 9 //PB5 #define CH_10 9
#define CH_11 10 //PE3 #define CH_11 10
#include <inttypes.h> #define NUM_CHANNELS 8
class APM_RC_Class class APM_RC_Class
{ {
private:
public: public:
APM_RC_Class(); APM_RC_Class() {}
void Init(); virtual void OutputCh(uint8_t ch, uint16_t pwm) = 0;
void OutputCh(uint8_t ch, uint16_t pwm); virtual uint16_t InputCh(uint8_t ch) = 0;
uint16_t InputCh(uint8_t ch); virtual uint8_t GetState() = 0;
uint8_t GetState(); virtual void clearOverride(void) = 0;
void Force_Out0_Out1(void); virtual void Force_Out() = 0;
void Force_Out2_Out3(void);
void Force_Out6_Out7(void);
bool setHIL(int16_t v[NUM_CHANNELS]);
void clearOverride(void);
private:
int16_t _HIL_override[NUM_CHANNELS];
}; };
extern APM_RC_Class APM_RC; #include "APM_RC_APM1.h"
#include "APM_RC_Purple.h"
#endif #endif

View File

@ -1,236 +1,241 @@
/* /*
APM_RC.cpp - Radio Control Library for Ardupilot Mega. Arduino APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino
Code by Jordi Muñoz and Jose Julio. DIYDrones.com Code by Jordi Muñoz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. version 2.1 of the License, or (at your option) any later version.
RC Input : PPM signal on IC4 pin RC Input : PPM signal on IC4 pin
RC Output : 11 Servo outputs (standard 20ms frame) RC Output : 11 Servo outputs (standard 20ms frame)
Methods: Methods:
Init() : Initialization of interrupts an Timers Init() : Initialization of interrupts an Timers
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10 OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
InputCh(ch) : Read a channel input value. ch=0..7 InputCh(ch) : Read a channel input value. ch=0..7
GetState() : Returns the state of the input. 1 => New radio frame to process GetState() : Returns the state of the input. 1 => New radio frame to process
Automatically resets when we call InputCh to read channels Automatically resets when we call InputCh to read channels
*/ */
#include "APM_RC.h" #include "APM_RC_APM1.h"
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include "WProgram.h" #include "WProgram.h"
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__) #if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target. # error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
#else #else
// Variable definition for Input Capture interrupt // Variable definition for Input Capture interrupt
//volatile uint16_t ICR4_old; volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
//volatile uint8_t PPM_Counter=0; volatile uint8_t APM_RC_APM1::_radio_status=0;
volatile uint16_t PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
volatile uint8_t radio_status=0; /****************************************************
Input Capture Interrupt ICP4 => PPM signal read
/**************************************************** ****************************************************/
Input Capture Interrupt ICP4 => PPM signal read void APM_RC_APM1::_timer4_capt_cb(void)
****************************************************/ {
ISR(TIMER4_CAPT_vect) static uint16_t ICR4_old;
{ static uint8_t PPM_Counter=0;
static uint16_t ICR4_old;
static uint8_t PPM_Counter=0; uint16_t Pulse;
uint16_t Pulse_Width;
uint16_t Pulse;
uint16_t Pulse_Width; Pulse=ICR4;
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
Pulse=ICR4; Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000) }
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse else {
} Pulse_Width=Pulse-ICR4_old; // Calculating pulse
else { }
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
} if (Pulse_Width>8000) { // SYNC pulse?
PPM_Counter=0;
if (Pulse_Width>8000) { // SYNC pulse? }
PPM_Counter=0; else {
} if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
else { _PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse. if (PPM_Counter >= NUM_CHANNELS) {
_radio_status = 1;
if (PPM_Counter >= NUM_CHANNELS) { }
radio_status = 1; }
} }
} ICR4_old = Pulse;
} }
ICR4_old = Pulse;
}
// Constructors ////////////////////////////////////////////////////////////////
// Constructors //////////////////////////////////////////////////////////////// APM_RC_APM1::APM_RC_APM1()
{
APM_RC_Class::APM_RC_Class() }
{
} // Public Methods //////////////////////////////////////////////////////////////
void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg )
// Public Methods ////////////////////////////////////////////////////////////// {
void APM_RC_Class::Init(void)
{ isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb );
// Init PWM Timer 1
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A) // Init PWM Timer 1
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B) pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C) pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
//Remember the registers not declared here remains zero by default...
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all... //Remember the registers not declared here remains zero by default...
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
//OCR1A = 3000; //PB5, OUT9 TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
//OCR1B = 3000; //PB6, OUT2 //OCR1A = 3000; //PB5, OUT9
//OCR1C = 3000; //PB7 OUT3 //OCR1B = 3000; //PB6, OUT2
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000, //OCR1C = 3000; //PB7 OUT3
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
// Init PWM Timer 3
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B) // Init PWM Timer 3
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C) pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
pinMode(5,OUTPUT); //OUT10(PE3/OC3A) pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1)); pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31); TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
//OCR3A = 3000; //PE3, OUT10 TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
//OCR3B = 3000; //PE4, OUT7 //OCR3A = 3000; //PE3, OUT10
//OCR3C = 3000; //PE5, OUT6 //OCR3B = 3000; //PE4, OUT7
ICR3 = 40000; //50hz freq //OCR3C = 3000; //PE5, OUT6
ICR3 = 40000; //50hz freq
// Init PWM Timer 5
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C) // Init PWM Timer 5
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B) pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A) pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51); TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
//OCR5A = 3000; //PL3, OUT8 TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
//OCR5B = 3000; //PL4, OUT0 //OCR5A = 3000; //PL3, OUT8
//OCR5C = 3000; //PL5, OUT1 //OCR5B = 3000; //PL4, OUT0
ICR5 = 40000; //50hz freq //OCR5C = 3000; //PL5, OUT1
ICR5 = 40000; //50hz freq
// Init PPM input and PWM Timer 4
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input) // Init PPM input and PWM Timer 4
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B) pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C) pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
//Prescaler set to 8, that give us a resolution of 0.5us TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
// Input Capture rising edge //Prescaler set to 8, that give us a resolution of 0.5us
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4)); // Input Capture rising edge
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
OCR4A = 40000; ///50hz freq.
OCR4B = 3000; //PH4, OUT5 OCR4A = 40000; ///50hz freq.
OCR4C = 3000; //PH5, OUT4 OCR4B = 3000; //PH4, OUT5
OCR4C = 3000; //PH5, OUT4
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge) //TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask //TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
} TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
}
void APM_RC_Class::OutputCh(uint8_t ch, uint16_t pwm)
{ void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm)
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH); {
pwm<<=1; // pwm*2; pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
pwm<<=1; // pwm*2;
switch(ch)
{ switch(ch)
case 0: OCR5B=pwm; break; //ch0 {
case 1: OCR5C=pwm; break; //ch1 case 0: OCR5B=pwm; break; //ch0
case 2: OCR1B=pwm; break; //ch2 case 1: OCR5C=pwm; break; //ch1
case 3: OCR1C=pwm; break; //ch3 case 2: OCR1B=pwm; break; //ch2
case 4: OCR4C=pwm; break; //ch4 case 3: OCR1C=pwm; break; //ch3
case 5: OCR4B=pwm; break; //ch5 case 4: OCR4C=pwm; break; //ch4
case 6: OCR3C=pwm; break; //ch6 case 5: OCR4B=pwm; break; //ch5
case 7: OCR3B=pwm; break; //ch7 case 6: OCR3C=pwm; break; //ch6
case 8: OCR5A=pwm; break; //ch8, PL3 case 7: OCR3B=pwm; break; //ch7
case 9: OCR1A=pwm; break; //ch9, PB5 case 8: OCR5A=pwm; break; //ch8, PL3
case 10: OCR3A=pwm; break; //ch10, PE3 case 9: OCR1A=pwm; break; //ch9, PB5
} case 10: OCR3A=pwm; break; //ch10, PE3
} }
}
uint16_t APM_RC_Class::InputCh(uint8_t ch)
{ uint16_t APM_RC_APM1::InputCh(uint8_t ch)
uint16_t result; {
uint16_t result;
if (_HIL_override[ch] != 0) {
return _HIL_override[ch]; if (_HIL_override[ch] != 0) {
} return _HIL_override[ch];
}
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct... // Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
result = PWM_RAW[ch]; // We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
if (result != PWM_RAW[ch]) { result = _PWM_RAW[ch];
result = PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine) if (result != _PWM_RAW[ch]) {
} result = _PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine)
result >>= 1; // Because timer runs at 0.5us we need to do value/2 }
result >>= 1; // Because timer runs at 0.5us we need to do value/2
// Limit values to a valid range
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH); // Limit values to a valid range
radio_status=0; // Radio channel read result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
return(result); _radio_status=0; // Radio channel read
} return(result);
}
uint8_t APM_RC_Class::GetState(void)
{ uint8_t APM_RC_APM1::GetState(void)
return(radio_status); {
} return(_radio_status);
}
// InstantPWM implementation
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
void APM_RC_Class::Force_Out0_Out1(void) // InstantPWM implementation
{ void APM_RC_APM1::Force_Out(void)
if (TCNT5>5000) // We take care that there are not a pulse in the output {
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000 Force_Out0_Out1();
} Force_Out2_Out3();
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use Force_Out6_Out7();
void APM_RC_Class::Force_Out2_Out3(void) }
{ // This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
if (TCNT1>5000) void APM_RC_APM1::Force_Out0_Out1(void)
TCNT1=39990; {
} if (TCNT5>5000) // We take care that there are not a pulse in the output
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
void APM_RC_Class::Force_Out6_Out7(void) }
{ // This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
if (TCNT3>5000) void APM_RC_APM1::Force_Out2_Out3(void)
TCNT3=39990; {
} if (TCNT1>5000)
TCNT1=39990;
// allow HIL override of RC values }
// A value of -1 means no change // This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
// A value of 0 means no override, use the real RC values void APM_RC_APM1::Force_Out6_Out7(void)
bool APM_RC_Class::setHIL(int16_t v[NUM_CHANNELS]) {
{ if (TCNT3>5000)
uint8_t sum = 0; TCNT3=39990;
for (uint8_t i=0; i<NUM_CHANNELS; i++) { }
if (v[i] != -1) {
_HIL_override[i] = v[i]; // allow HIL override of RC values
} // A value of -1 means no change
if (_HIL_override[i] != 0) { // A value of 0 means no override, use the real RC values
sum++; bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS])
} {
} uint8_t sum = 0;
radio_status = 1; for (uint8_t i=0; i<NUM_CHANNELS; i++) {
if (sum == 0) { if (v[i] != -1) {
return 0; _HIL_override[i] = v[i];
} else { }
return 1; if (_HIL_override[i] != 0) {
} sum++;
} }
}
void APM_RC_Class::clearOverride(void) _radio_status = 1;
{ if (sum == 0) {
for (uint8_t i=0; i<NUM_CHANNELS; i++) { return 0;
_HIL_override[i] = 0; } else {
} return 1;
} }
}
// make one instance for the user to use void APM_RC_APM1::clearOverride(void)
APM_RC_Class APM_RC; {
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
#endif // defined(ATMega1280) _HIL_override[i] = 0;
}
}
#endif // defined(ATMega1280)

View File

@ -0,0 +1,36 @@
#ifndef __APM_RC_APM1_H__
#define __APM_RC_APM1_H__
#define MIN_PULSEWIDTH 900
#define MAX_PULSEWIDTH 2100
#include "APM_RC.h"
#include "../Arduino_Mega_ISR_Registry/Arduino_Mega_ISR_Registry.h"
class APM_RC_APM1 : public APM_RC_Class
{
public:
APM_RC_APM1();
void Init( Arduino_Mega_ISR_Registry * isr_reg );
void OutputCh(uint8_t ch, uint16_t pwm);
uint16_t InputCh(uint8_t ch);
uint8_t GetState();
bool setHIL(int16_t v[NUM_CHANNELS]);
void clearOverride(void);
void Force_Out(void);
void Force_Out0_Out1(void);
void Force_Out2_Out3(void);
void Force_Out6_Out7(void);
private:
static void _timer4_capt_cb(void);
static volatile uint16_t _PWM_RAW[NUM_CHANNELS];
static volatile uint8_t _radio_status;
int16_t _HIL_override[NUM_CHANNELS];
};
#endif

View File

@ -0,0 +1,224 @@
/*
APM_RC_Purple.cpp - Radio Control Library for Ardupilot Mega 2.0. Arduino
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
RC Input : PPM signal on IC4 pin
RC Output : 11 Servo outputs (standard 20ms frame)
Methods:
Init() : Initialization of interrupts an Timers
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
InputCh(ch) : Read a channel input value. ch=0..7
GetState() : Returns the state of the input. 1 => New radio frame to process
Automatically resets when we call InputCh to read channels
*/
#include "APM_RC_Purple.h"
#include "WProgram.h"
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
#else
// Variable definition for Input Capture interrupt
volatile uint16_t APM_RC_Purple::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
volatile uint8_t APM_RC_Purple::_radio_status=0;
/****************************************************
Input Capture Interrupt ICP5 => PPM signal read
****************************************************/
void APM_RC_Purple::_timer5_capt_cb(void)
{
static uint16_t prev_icr;
static uint8_t frame_idx;
uint16_t icr;
uint16_t pwidth;
icr = ICR5;
// Calculate pulse width assuming timer overflow TOP = 40000
if ( icr < prev_icr ) {
pwidth = ( icr + 40000 ) - prev_icr;
} else {
pwidth = icr - prev_icr;
}
// Was it a sync pulse? If so, reset frame.
if ( pwidth > 8000 ) {
frame_idx=0;
} else {
// Save pulse into _PWM_RAW array.
if ( frame_idx < NUM_CHANNELS ) {
_PWM_RAW[ frame_idx++ ] = pwidth;
// If this is the last pulse in a frame, set _radio_status.
if (frame_idx >= NUM_CHANNELS) {
_radio_status = 1;
}
}
}
// Save icr for next call.
prev_icr = icr;
}
// Constructors ////////////////////////////////////////////////////////////////
APM_RC_Purple::APM_RC_Purple()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void APM_RC_Purple::Init( Arduino_Mega_ISR_Registry * isr_reg )
{
// --------------------- TIMER1: OUT1 and OUT2 -----------------------
pinMode(12,OUTPUT); // OUT1 (PB6/OC1B)
pinMode(11,OUTPUT); // OUT2 (PB5/OC1A)
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR1.
// COM1A and COM1B enabled, set to low level on match.
// CS11: prescale by 8 => 0.5us tick
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1));
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11);
ICR1 = 40000; // 0.5us tick => 50hz freq
OutputCh(1, 1100);
OutputCh(2, 1100);
// --------------- TIMER4: OUT3, OUT4, and OUT5 ---------------------
pinMode(8,OUTPUT); // OUT3 (PH5/OC4C)
pinMode(7,OUTPUT); // OUT4 (PH4/OC4B)
pinMode(6,OUTPUT); // OUT5 (PH3/OC4A)
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR4.
// COM4A, 4B, 4C enabled, set to low level on match.
// CS41: prescale by 8 => 0.5us tick
TCCR4A =((1<<WGM41)|(1<<COM4A1)|(1<<COM4B1)|(1<<COM4C1));
TCCR4B = (1<<WGM43)|(1<<WGM42)|(1<<CS41);
ICR4 = 40000; // 0.5us tick => 50hz freq
OutputCh(3, 1100);
OutputCh(4, 1100);
OutputCh(5, 1100);
//--------------- TIMER3: OUT6, OUT7, and OUT8 ----------------------
pinMode(3,OUTPUT); // OUT6 (PE5/OC3C)
pinMode(2,OUTPUT); // OUT7 (PE4/OC3B)
pinMode(5,OUTPUT); // OUT8 (PE3/OC3A)
// WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR3
// COM3A, 3B, 3C enabled, set to low level on match
// CS31: prescale by 8 => 0.5us tick
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
ICR3 = 40000; // 0.5us tick => 50hz freq
OutputCh(6, 1100);
OutputCh(7, 1100);
OutputCh(8, 1100);
//--------------- TIMER5: PPM INPUT ---------------------------------
// Init PPM input on Timer 5
pinMode(48, INPUT); // PPM Input (PL1/ICP5)
// WGM: 1 1 1 1. Fast PWM, TOP is OCR5A
// COM all disabled.
// CS51: prescale by 8 => 0.5us tick
// ICES5: Input Capture on rising edge
TCCR5A =((1<<WGM50)|(1<<WGM51));
// Input Capture rising edge
TCCR5B = ((1<<WGM53)|(1<<WGM52)|(1<<CS51)|(1<<ICES5));
OCR5A = 40000; // 0.5us tick => 50hz freq. The input capture routine
// assumes this 40000 for TOP.
isr_reg->register_signal( ISR_REGISTRY_TIMER5_CAPT, _timer5_capt_cb );
// Enable Input Capture interrupt
TIMSK5 |= (1<<ICIE5);
}
void APM_RC_Purple::OutputCh(unsigned char ch, uint16_t pwm)
{
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
pwm<<=1; // pwm*2;
switch(ch)
{
case 0: OCR1B=pwm; break; // out1
case 1: OCR1A=pwm; break; // out2
case 2: OCR4C=pwm; break; // out3
case 3: OCR4B=pwm; break; // out4
case 4: OCR4A=pwm; break; // out5
case 5: OCR3C=pwm; break; // out6
case 6: OCR3B=pwm; break; // out7
case 7: OCR3A=pwm; break; // out8
}
}
uint16_t APM_RC_Purple::InputCh(unsigned char ch)
{
uint16_t result;
uint16_t result2;
if (_HIL_override[ch] != 0) {
return _HIL_override[ch];
}
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
result = _PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
result2 = _PWM_RAW[ch]>>1;
if (result != result2)
result = _PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
// Limit values to a valid range
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
_radio_status=0; // Radio channel read
return(result);
}
unsigned char APM_RC_Purple::GetState(void)
{
return(_radio_status);
}
// InstantPWM is not implemented!
void APM_RC_Purple::Force_Out(void) { }
void APM_RC_Purple::Force_Out0_Out1(void) { }
void APM_RC_Purple::Force_Out2_Out3(void) { }
void APM_RC_Purple::Force_Out6_Out7(void) { }
// allow HIL override of RC values
// A value of -1 means no change
// A value of 0 means no override, use the real RC values
bool APM_RC_Purple::setHIL(int16_t v[NUM_CHANNELS])
{
uint8_t sum = 0;
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
if (v[i] != -1) {
_HIL_override[i] = v[i];
}
if (_HIL_override[i] != 0) {
sum++;
}
}
if (sum == 0) {
return 0;
} else {
return 1;
}
_radio_status = 1;
}
void APM_RC_Purple::clearOverride(void)
{
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
_HIL_override[i] = 0;
}
}
#endif

View File

@ -0,0 +1,36 @@
#ifndef __APM_RC_PURPLE_H__
#define __APM_RC_PURPLE_H__
#define NUM_CHANNELS 8
#define MIN_PULSEWIDTH 900
#define MAX_PULSEWIDTH 2100
#include "APM_RC.h"
#include "../Arduino_Mega_ISR_Registry/Arduino_Mega_ISR_Registry.h"
class APM_RC_Purple : public APM_RC_Class
{
private:
public:
APM_RC_Purple();
void Init( Arduino_Mega_ISR_Registry * isr_reg );
void OutputCh(unsigned char ch, uint16_t pwm);
uint16_t InputCh(unsigned char ch);
unsigned char GetState();
bool setHIL(int16_t v[NUM_CHANNELS]);
void clearOverride(void);
void Force_Out(void);
void Force_Out0_Out1(void);
void Force_Out2_Out3(void);
void Force_Out6_Out7(void);
private:
static void _timer5_capt_cb(void);
static volatile uint16_t _PWM_RAW[NUM_CHANNELS];
static volatile uint8_t _radio_status;
int16_t _HIL_override[NUM_CHANNELS];
};
#endif

View File

@ -6,13 +6,18 @@
(Works with last PPM_encoder firmware) (Works with last PPM_encoder firmware)
*/ */
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library #include <APM_RC.h> // ArduPilot Mega RC Library
Arduino_Mega_ISR_Registry isr_registry;
APM_RC_APM1 APM_RC;
void setup() void setup()
{ {
APM_RC.Init(); // APM Radio initialization isr_registry.init();
APM_RC.Init(&isr_registry); // APM Radio initialization
Serial.begin(38400); Serial.begin(115200);
Serial.println("ArduPilot Mega RC library test"); Serial.println("ArduPilot Mega RC library test");
delay(1000); delay(1000);
} }
@ -29,4 +34,4 @@ void loop()
} }
Serial.println(); Serial.println();
} }
} }

View File

@ -1,2 +1,2 @@
BOARD = mega BOARD = mega2560
include ../../../AP_Common/Arduino.mk include ../../../AP_Common/Arduino.mk

View File

@ -0,0 +1,2 @@
BOARD = mega2560
include ../../../AP_Common/Arduino.mk

View File

@ -0,0 +1,37 @@
/*
Example of APM_RC library.
Code by Jordi MuÒoz and Jose Julio. DIYDrones.com
Print Input values and send Output to the servos
(Works with last PPM_encoder firmware)
*/
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
Arduino_Mega_ISR_Registry isr_registry;
APM_RC_Purple APM_RC;
void setup()
{
isr_registry.init();
APM_RC.Init(&isr_registry); // APM Radio initialization
Serial.begin(115200);
Serial.println("ArduPilot Mega RC library test");
delay(1000);
}
void loop()
{
// New radio frame? (we could use also if((millis()- timer) > 20)
if (APM_RC.GetState() == 1){
Serial.print("CH:");
for(int i = 0; i < 8; i++){
Serial.print(APM_RC.InputCh(i)); // Print channel values
Serial.print(",");
APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos
}
Serial.println();
}
}