mirror of https://github.com/ArduPilot/ardupilot
purple: rework APM_RC library for purple hardware
this splits the APM_RC class into instances for purple and APM1, and adds example sketches for both
This commit is contained in:
parent
89d2f0f849
commit
36346fd86b
|
@ -1,9 +1,7 @@
|
|||
#ifndef APM_RC_h
|
||||
#define APM_RC_h
|
||||
#ifndef __APM_RC_H__
|
||||
#define __APM_RC_H__
|
||||
|
||||
#define NUM_CHANNELS 8
|
||||
#define MIN_PULSEWIDTH 900
|
||||
#define MAX_PULSEWIDTH 2100
|
||||
#include <inttypes.h>
|
||||
|
||||
// Radio channels
|
||||
// Note channels are from 0!
|
||||
|
@ -15,30 +13,23 @@
|
|||
#define CH_6 5
|
||||
#define CH_7 6
|
||||
#define CH_8 7
|
||||
#define CH_10 9 //PB5
|
||||
#define CH_11 10 //PE3
|
||||
#define CH_10 9
|
||||
#define CH_11 10
|
||||
|
||||
#include <inttypes.h>
|
||||
#define NUM_CHANNELS 8
|
||||
|
||||
class APM_RC_Class
|
||||
{
|
||||
private:
|
||||
public:
|
||||
APM_RC_Class();
|
||||
void Init();
|
||||
void OutputCh(uint8_t ch, uint16_t pwm);
|
||||
uint16_t InputCh(uint8_t ch);
|
||||
uint8_t GetState();
|
||||
void Force_Out0_Out1(void);
|
||||
void Force_Out2_Out3(void);
|
||||
void Force_Out6_Out7(void);
|
||||
bool setHIL(int16_t v[NUM_CHANNELS]);
|
||||
void clearOverride(void);
|
||||
|
||||
private:
|
||||
int16_t _HIL_override[NUM_CHANNELS];
|
||||
APM_RC_Class() {}
|
||||
virtual void OutputCh(uint8_t ch, uint16_t pwm) = 0;
|
||||
virtual uint16_t InputCh(uint8_t ch) = 0;
|
||||
virtual uint8_t GetState() = 0;
|
||||
virtual void clearOverride(void) = 0;
|
||||
virtual void Force_Out() = 0;
|
||||
};
|
||||
|
||||
extern APM_RC_Class APM_RC;
|
||||
#include "APM_RC_APM1.h"
|
||||
#include "APM_RC_Purple.h"
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,236 +1,241 @@
|
|||
/*
|
||||
APM_RC.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
#include "APM_RC.h"
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#include "WProgram.h"
|
||||
|
||||
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
||||
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
||||
#else
|
||||
|
||||
// Variable definition for Input Capture interrupt
|
||||
//volatile uint16_t ICR4_old;
|
||||
//volatile uint8_t PPM_Counter=0;
|
||||
volatile uint16_t PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
||||
volatile uint8_t radio_status=0;
|
||||
|
||||
/****************************************************
|
||||
Input Capture Interrupt ICP4 => PPM signal read
|
||||
****************************************************/
|
||||
ISR(TIMER4_CAPT_vect)
|
||||
{
|
||||
static uint16_t ICR4_old;
|
||||
static uint8_t PPM_Counter=0;
|
||||
|
||||
uint16_t Pulse;
|
||||
uint16_t Pulse_Width;
|
||||
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
|
||||
}
|
||||
else {
|
||||
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
|
||||
}
|
||||
|
||||
if (Pulse_Width>8000) { // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
}
|
||||
else {
|
||||
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
|
||||
PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
|
||||
|
||||
if (PPM_Counter >= NUM_CHANNELS) {
|
||||
radio_status = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
}
|
||||
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
|
||||
APM_RC_Class::APM_RC_Class()
|
||||
{
|
||||
}
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void APM_RC_Class::Init(void)
|
||||
{
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
//OCR1A = 3000; //PB5, OUT9
|
||||
//OCR1B = 3000; //PB6, OUT2
|
||||
//OCR1C = 3000; //PB7 OUT3
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
//OCR3A = 3000; //PE3, OUT10
|
||||
//OCR3B = 3000; //PE4, OUT7
|
||||
//OCR3C = 3000; //PE5, OUT6
|
||||
ICR3 = 40000; //50hz freq
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
|
||||
|
||||
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
//OCR5A = 3000; //PL3, OUT8
|
||||
//OCR5B = 3000; //PL4, OUT0
|
||||
//OCR5C = 3000; //PL5, OUT1
|
||||
ICR5 = 40000; //50hz freq
|
||||
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
OCR4B = 3000; //PH4, OUT5
|
||||
OCR4C = 3000; //PH5, OUT4
|
||||
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
}
|
||||
|
||||
void APM_RC_Class::OutputCh(uint8_t ch, uint16_t pwm)
|
||||
{
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR5B=pwm; break; //ch0
|
||||
case 1: OCR5C=pwm; break; //ch1
|
||||
case 2: OCR1B=pwm; break; //ch2
|
||||
case 3: OCR1C=pwm; break; //ch3
|
||||
case 4: OCR4C=pwm; break; //ch4
|
||||
case 5: OCR4B=pwm; break; //ch5
|
||||
case 6: OCR3C=pwm; break; //ch6
|
||||
case 7: OCR3B=pwm; break; //ch7
|
||||
case 8: OCR5A=pwm; break; //ch8, PL3
|
||||
case 9: OCR1A=pwm; break; //ch9, PB5
|
||||
case 10: OCR3A=pwm; break; //ch10, PE3
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_Class::InputCh(uint8_t ch)
|
||||
{
|
||||
uint16_t result;
|
||||
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = PWM_RAW[ch];
|
||||
if (result != PWM_RAW[ch]) {
|
||||
result = PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine)
|
||||
}
|
||||
result >>= 1; // Because timer runs at 0.5us we need to do value/2
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
radio_status=0; // Radio channel read
|
||||
return(result);
|
||||
}
|
||||
|
||||
uint8_t APM_RC_Class::GetState(void)
|
||||
{
|
||||
return(radio_status);
|
||||
}
|
||||
|
||||
// InstantPWM implementation
|
||||
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
|
||||
void APM_RC_Class::Force_Out0_Out1(void)
|
||||
{
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
|
||||
void APM_RC_Class::Force_Out2_Out3(void)
|
||||
{
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
|
||||
void APM_RC_Class::Force_Out6_Out7(void)
|
||||
{
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
}
|
||||
|
||||
// allow HIL override of RC values
|
||||
// A value of -1 means no change
|
||||
// A value of 0 means no override, use the real RC values
|
||||
bool APM_RC_Class::setHIL(int16_t v[NUM_CHANNELS])
|
||||
{
|
||||
uint8_t sum = 0;
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
if (_HIL_override[i] != 0) {
|
||||
sum++;
|
||||
}
|
||||
}
|
||||
radio_status = 1;
|
||||
if (sum == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
void APM_RC_Class::clearOverride(void)
|
||||
{
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
_HIL_override[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// make one instance for the user to use
|
||||
APM_RC_Class APM_RC;
|
||||
|
||||
#endif // defined(ATMega1280)
|
||||
/*
|
||||
APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
#include "APM_RC_APM1.h"
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#include "WProgram.h"
|
||||
|
||||
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
||||
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
||||
#else
|
||||
|
||||
// Variable definition for Input Capture interrupt
|
||||
volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
||||
volatile uint8_t APM_RC_APM1::_radio_status=0;
|
||||
|
||||
/****************************************************
|
||||
Input Capture Interrupt ICP4 => PPM signal read
|
||||
****************************************************/
|
||||
void APM_RC_APM1::_timer4_capt_cb(void)
|
||||
{
|
||||
static uint16_t ICR4_old;
|
||||
static uint8_t PPM_Counter=0;
|
||||
|
||||
uint16_t Pulse;
|
||||
uint16_t Pulse_Width;
|
||||
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
|
||||
}
|
||||
else {
|
||||
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
|
||||
}
|
||||
|
||||
if (Pulse_Width>8000) { // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
}
|
||||
else {
|
||||
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
|
||||
_PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
|
||||
|
||||
if (PPM_Counter >= NUM_CHANNELS) {
|
||||
_radio_status = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
}
|
||||
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
|
||||
APM_RC_APM1::APM_RC_APM1()
|
||||
{
|
||||
}
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg )
|
||||
{
|
||||
|
||||
isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb );
|
||||
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
//OCR1A = 3000; //PB5, OUT9
|
||||
//OCR1B = 3000; //PB6, OUT2
|
||||
//OCR1C = 3000; //PB7 OUT3
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
//OCR3A = 3000; //PE3, OUT10
|
||||
//OCR3B = 3000; //PE4, OUT7
|
||||
//OCR3C = 3000; //PE5, OUT6
|
||||
ICR3 = 40000; //50hz freq
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
|
||||
|
||||
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
//OCR5A = 3000; //PL3, OUT8
|
||||
//OCR5B = 3000; //PL4, OUT0
|
||||
//OCR5C = 3000; //PL5, OUT1
|
||||
ICR5 = 40000; //50hz freq
|
||||
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
OCR4B = 3000; //PH4, OUT5
|
||||
OCR4C = 3000; //PH5, OUT4
|
||||
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
}
|
||||
|
||||
void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm)
|
||||
{
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR5B=pwm; break; //ch0
|
||||
case 1: OCR5C=pwm; break; //ch1
|
||||
case 2: OCR1B=pwm; break; //ch2
|
||||
case 3: OCR1C=pwm; break; //ch3
|
||||
case 4: OCR4C=pwm; break; //ch4
|
||||
case 5: OCR4B=pwm; break; //ch5
|
||||
case 6: OCR3C=pwm; break; //ch6
|
||||
case 7: OCR3B=pwm; break; //ch7
|
||||
case 8: OCR5A=pwm; break; //ch8, PL3
|
||||
case 9: OCR1A=pwm; break; //ch9, PB5
|
||||
case 10: OCR3A=pwm; break; //ch10, PE3
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_APM1::InputCh(uint8_t ch)
|
||||
{
|
||||
uint16_t result;
|
||||
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = _PWM_RAW[ch];
|
||||
if (result != _PWM_RAW[ch]) {
|
||||
result = _PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine)
|
||||
}
|
||||
result >>= 1; // Because timer runs at 0.5us we need to do value/2
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
_radio_status=0; // Radio channel read
|
||||
return(result);
|
||||
}
|
||||
|
||||
uint8_t APM_RC_APM1::GetState(void)
|
||||
{
|
||||
return(_radio_status);
|
||||
}
|
||||
|
||||
|
||||
// InstantPWM implementation
|
||||
void APM_RC_APM1::Force_Out(void)
|
||||
{
|
||||
Force_Out0_Out1();
|
||||
Force_Out2_Out3();
|
||||
Force_Out6_Out7();
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out0_Out1(void)
|
||||
{
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out2_Out3(void)
|
||||
{
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out6_Out7(void)
|
||||
{
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
}
|
||||
|
||||
// allow HIL override of RC values
|
||||
// A value of -1 means no change
|
||||
// A value of 0 means no override, use the real RC values
|
||||
bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS])
|
||||
{
|
||||
uint8_t sum = 0;
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
if (_HIL_override[i] != 0) {
|
||||
sum++;
|
||||
}
|
||||
}
|
||||
_radio_status = 1;
|
||||
if (sum == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
void APM_RC_APM1::clearOverride(void)
|
||||
{
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
_HIL_override[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // defined(ATMega1280)
|
|
@ -0,0 +1,36 @@
|
|||
#ifndef __APM_RC_APM1_H__
|
||||
#define __APM_RC_APM1_H__
|
||||
|
||||
#define MIN_PULSEWIDTH 900
|
||||
#define MAX_PULSEWIDTH 2100
|
||||
|
||||
#include "APM_RC.h"
|
||||
#include "../Arduino_Mega_ISR_Registry/Arduino_Mega_ISR_Registry.h"
|
||||
|
||||
class APM_RC_APM1 : public APM_RC_Class
|
||||
{
|
||||
public:
|
||||
APM_RC_APM1();
|
||||
void Init( Arduino_Mega_ISR_Registry * isr_reg );
|
||||
void OutputCh(uint8_t ch, uint16_t pwm);
|
||||
uint16_t InputCh(uint8_t ch);
|
||||
uint8_t GetState();
|
||||
bool setHIL(int16_t v[NUM_CHANNELS]);
|
||||
void clearOverride(void);
|
||||
void Force_Out(void);
|
||||
|
||||
void Force_Out0_Out1(void);
|
||||
void Force_Out2_Out3(void);
|
||||
void Force_Out6_Out7(void);
|
||||
|
||||
private:
|
||||
|
||||
static void _timer4_capt_cb(void);
|
||||
|
||||
static volatile uint16_t _PWM_RAW[NUM_CHANNELS];
|
||||
static volatile uint8_t _radio_status;
|
||||
|
||||
int16_t _HIL_override[NUM_CHANNELS];
|
||||
};
|
||||
|
||||
#endif
|
|
@ -0,0 +1,224 @@
|
|||
/*
|
||||
APM_RC_Purple.cpp - Radio Control Library for Ardupilot Mega 2.0. Arduino
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
#include "APM_RC_Purple.h"
|
||||
|
||||
#include "WProgram.h"
|
||||
|
||||
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
||||
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
||||
#else
|
||||
|
||||
// Variable definition for Input Capture interrupt
|
||||
volatile uint16_t APM_RC_Purple::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
||||
volatile uint8_t APM_RC_Purple::_radio_status=0;
|
||||
|
||||
/****************************************************
|
||||
Input Capture Interrupt ICP5 => PPM signal read
|
||||
****************************************************/
|
||||
void APM_RC_Purple::_timer5_capt_cb(void)
|
||||
{
|
||||
static uint16_t prev_icr;
|
||||
static uint8_t frame_idx;
|
||||
uint16_t icr;
|
||||
uint16_t pwidth;
|
||||
|
||||
icr = ICR5;
|
||||
// Calculate pulse width assuming timer overflow TOP = 40000
|
||||
if ( icr < prev_icr ) {
|
||||
pwidth = ( icr + 40000 ) - prev_icr;
|
||||
} else {
|
||||
pwidth = icr - prev_icr;
|
||||
}
|
||||
|
||||
// Was it a sync pulse? If so, reset frame.
|
||||
if ( pwidth > 8000 ) {
|
||||
frame_idx=0;
|
||||
} else {
|
||||
// Save pulse into _PWM_RAW array.
|
||||
if ( frame_idx < NUM_CHANNELS ) {
|
||||
_PWM_RAW[ frame_idx++ ] = pwidth;
|
||||
// If this is the last pulse in a frame, set _radio_status.
|
||||
if (frame_idx >= NUM_CHANNELS) {
|
||||
_radio_status = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Save icr for next call.
|
||||
prev_icr = icr;
|
||||
}
|
||||
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
|
||||
APM_RC_Purple::APM_RC_Purple()
|
||||
{
|
||||
}
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void APM_RC_Purple::Init( Arduino_Mega_ISR_Registry * isr_reg )
|
||||
{
|
||||
// --------------------- TIMER1: OUT1 and OUT2 -----------------------
|
||||
pinMode(12,OUTPUT); // OUT1 (PB6/OC1B)
|
||||
pinMode(11,OUTPUT); // OUT2 (PB5/OC1A)
|
||||
|
||||
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR1.
|
||||
// COM1A and COM1B enabled, set to low level on match.
|
||||
// CS11: prescale by 8 => 0.5us tick
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1));
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11);
|
||||
ICR1 = 40000; // 0.5us tick => 50hz freq
|
||||
|
||||
OutputCh(1, 1100);
|
||||
OutputCh(2, 1100);
|
||||
|
||||
// --------------- TIMER4: OUT3, OUT4, and OUT5 ---------------------
|
||||
pinMode(8,OUTPUT); // OUT3 (PH5/OC4C)
|
||||
pinMode(7,OUTPUT); // OUT4 (PH4/OC4B)
|
||||
pinMode(6,OUTPUT); // OUT5 (PH3/OC4A)
|
||||
|
||||
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR4.
|
||||
// COM4A, 4B, 4C enabled, set to low level on match.
|
||||
// CS41: prescale by 8 => 0.5us tick
|
||||
TCCR4A =((1<<WGM41)|(1<<COM4A1)|(1<<COM4B1)|(1<<COM4C1));
|
||||
TCCR4B = (1<<WGM43)|(1<<WGM42)|(1<<CS41);
|
||||
ICR4 = 40000; // 0.5us tick => 50hz freq
|
||||
|
||||
OutputCh(3, 1100);
|
||||
OutputCh(4, 1100);
|
||||
OutputCh(5, 1100);
|
||||
|
||||
//--------------- TIMER3: OUT6, OUT7, and OUT8 ----------------------
|
||||
pinMode(3,OUTPUT); // OUT6 (PE5/OC3C)
|
||||
pinMode(2,OUTPUT); // OUT7 (PE4/OC3B)
|
||||
pinMode(5,OUTPUT); // OUT8 (PE3/OC3A)
|
||||
|
||||
// WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR3
|
||||
// COM3A, 3B, 3C enabled, set to low level on match
|
||||
// CS31: prescale by 8 => 0.5us tick
|
||||
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
ICR3 = 40000; // 0.5us tick => 50hz freq
|
||||
|
||||
OutputCh(6, 1100);
|
||||
OutputCh(7, 1100);
|
||||
OutputCh(8, 1100);
|
||||
|
||||
//--------------- TIMER5: PPM INPUT ---------------------------------
|
||||
// Init PPM input on Timer 5
|
||||
pinMode(48, INPUT); // PPM Input (PL1/ICP5)
|
||||
|
||||
// WGM: 1 1 1 1. Fast PWM, TOP is OCR5A
|
||||
// COM all disabled.
|
||||
// CS51: prescale by 8 => 0.5us tick
|
||||
// ICES5: Input Capture on rising edge
|
||||
TCCR5A =((1<<WGM50)|(1<<WGM51));
|
||||
// Input Capture rising edge
|
||||
TCCR5B = ((1<<WGM53)|(1<<WGM52)|(1<<CS51)|(1<<ICES5));
|
||||
OCR5A = 40000; // 0.5us tick => 50hz freq. The input capture routine
|
||||
// assumes this 40000 for TOP.
|
||||
|
||||
isr_reg->register_signal( ISR_REGISTRY_TIMER5_CAPT, _timer5_capt_cb );
|
||||
// Enable Input Capture interrupt
|
||||
TIMSK5 |= (1<<ICIE5);
|
||||
}
|
||||
|
||||
void APM_RC_Purple::OutputCh(unsigned char ch, uint16_t pwm)
|
||||
{
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR1B=pwm; break; // out1
|
||||
case 1: OCR1A=pwm; break; // out2
|
||||
case 2: OCR4C=pwm; break; // out3
|
||||
case 3: OCR4B=pwm; break; // out4
|
||||
case 4: OCR4A=pwm; break; // out5
|
||||
case 5: OCR3C=pwm; break; // out6
|
||||
case 6: OCR3B=pwm; break; // out7
|
||||
case 7: OCR3A=pwm; break; // out8
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_Purple::InputCh(unsigned char ch)
|
||||
{
|
||||
uint16_t result;
|
||||
uint16_t result2;
|
||||
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = _PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
|
||||
result2 = _PWM_RAW[ch]>>1;
|
||||
if (result != result2)
|
||||
result = _PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
_radio_status=0; // Radio channel read
|
||||
return(result);
|
||||
}
|
||||
|
||||
unsigned char APM_RC_Purple::GetState(void)
|
||||
{
|
||||
return(_radio_status);
|
||||
}
|
||||
|
||||
// InstantPWM is not implemented!
|
||||
|
||||
void APM_RC_Purple::Force_Out(void) { }
|
||||
void APM_RC_Purple::Force_Out0_Out1(void) { }
|
||||
void APM_RC_Purple::Force_Out2_Out3(void) { }
|
||||
void APM_RC_Purple::Force_Out6_Out7(void) { }
|
||||
|
||||
// allow HIL override of RC values
|
||||
// A value of -1 means no change
|
||||
// A value of 0 means no override, use the real RC values
|
||||
bool APM_RC_Purple::setHIL(int16_t v[NUM_CHANNELS])
|
||||
{
|
||||
uint8_t sum = 0;
|
||||
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
if (_HIL_override[i] != 0) {
|
||||
sum++;
|
||||
}
|
||||
}
|
||||
if (sum == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
_radio_status = 1;
|
||||
}
|
||||
|
||||
void APM_RC_Purple::clearOverride(void)
|
||||
{
|
||||
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
||||
_HIL_override[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,36 @@
|
|||
#ifndef __APM_RC_PURPLE_H__
|
||||
#define __APM_RC_PURPLE_H__
|
||||
|
||||
#define NUM_CHANNELS 8
|
||||
#define MIN_PULSEWIDTH 900
|
||||
#define MAX_PULSEWIDTH 2100
|
||||
|
||||
#include "APM_RC.h"
|
||||
#include "../Arduino_Mega_ISR_Registry/Arduino_Mega_ISR_Registry.h"
|
||||
|
||||
class APM_RC_Purple : public APM_RC_Class
|
||||
{
|
||||
private:
|
||||
public:
|
||||
APM_RC_Purple();
|
||||
void Init( Arduino_Mega_ISR_Registry * isr_reg );
|
||||
void OutputCh(unsigned char ch, uint16_t pwm);
|
||||
uint16_t InputCh(unsigned char ch);
|
||||
unsigned char GetState();
|
||||
bool setHIL(int16_t v[NUM_CHANNELS]);
|
||||
void clearOverride(void);
|
||||
void Force_Out(void);
|
||||
void Force_Out0_Out1(void);
|
||||
void Force_Out2_Out3(void);
|
||||
void Force_Out6_Out7(void);
|
||||
|
||||
private:
|
||||
|
||||
static void _timer5_capt_cb(void);
|
||||
static volatile uint16_t _PWM_RAW[NUM_CHANNELS];
|
||||
static volatile uint8_t _radio_status;
|
||||
int16_t _HIL_override[NUM_CHANNELS];
|
||||
};
|
||||
|
||||
|
||||
#endif
|
|
@ -6,13 +6,18 @@
|
|||
(Works with last PPM_encoder firmware)
|
||||
*/
|
||||
|
||||
#include <Arduino_Mega_ISR_Registry.h>
|
||||
#include <APM_RC.h> // ArduPilot Mega RC Library
|
||||
|
||||
Arduino_Mega_ISR_Registry isr_registry;
|
||||
APM_RC_APM1 APM_RC;
|
||||
|
||||
void setup()
|
||||
{
|
||||
APM_RC.Init(); // APM Radio initialization
|
||||
isr_registry.init();
|
||||
APM_RC.Init(&isr_registry); // APM Radio initialization
|
||||
|
||||
Serial.begin(38400);
|
||||
Serial.begin(115200);
|
||||
Serial.println("ArduPilot Mega RC library test");
|
||||
delay(1000);
|
||||
}
|
||||
|
@ -29,4 +34,4 @@ void loop()
|
|||
}
|
||||
Serial.println();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,2 +1,2 @@
|
|||
BOARD = mega
|
||||
BOARD = mega2560
|
||||
include ../../../AP_Common/Arduino.mk
|
|
@ -0,0 +1,2 @@
|
|||
BOARD = mega2560
|
||||
include ../../../AP_Common/Arduino.mk
|
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
Example of APM_RC library.
|
||||
Code by Jordi MuÒoz and Jose Julio. DIYDrones.com
|
||||
|
||||
Print Input values and send Output to the servos
|
||||
(Works with last PPM_encoder firmware)
|
||||
*/
|
||||
|
||||
#include <Arduino_Mega_ISR_Registry.h>
|
||||
#include <APM_RC.h> // ArduPilot Mega RC Library
|
||||
|
||||
Arduino_Mega_ISR_Registry isr_registry;
|
||||
APM_RC_Purple APM_RC;
|
||||
|
||||
void setup()
|
||||
{
|
||||
isr_registry.init();
|
||||
APM_RC.Init(&isr_registry); // APM Radio initialization
|
||||
|
||||
Serial.begin(115200);
|
||||
Serial.println("ArduPilot Mega RC library test");
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// New radio frame? (we could use also if((millis()- timer) > 20)
|
||||
if (APM_RC.GetState() == 1){
|
||||
Serial.print("CH:");
|
||||
for(int i = 0; i < 8; i++){
|
||||
Serial.print(APM_RC.InputCh(i)); // Print channel values
|
||||
Serial.print(",");
|
||||
APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos
|
||||
}
|
||||
Serial.println();
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue