AP_NavEKF2: Reduce effect of rounding errors on covariance prediction

This commit is contained in:
Paul Riseborough 2015-10-15 23:01:04 +11:00 committed by Andrew Tridgell
parent 4e928bf294
commit 35b08849f7
4 changed files with 34 additions and 2 deletions

View File

@ -393,7 +393,7 @@ NavEKF2::NavEKF2(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng) :
gyroBiasNoiseScaler(2.0f), // scale factor applied to imu gyro bias learning before the vehicle is armed gyroBiasNoiseScaler(2.0f), // scale factor applied to imu gyro bias learning before the vehicle is armed
hgtAvg_ms(100), // average number of msec between height measurements hgtAvg_ms(100), // average number of msec between height measurements
betaAvg_ms(100), // average number of msec between synthetic sideslip measurements betaAvg_ms(100), // average number of msec between synthetic sideslip measurements
covTimeStepMax(0.07f), // maximum time (sec) between covariance prediction updates covTimeStepMax(0.1f), // maximum time (sec) between covariance prediction updates
covDelAngMax(0.05f), // maximum delta angle between covariance prediction updates covDelAngMax(0.05f), // maximum delta angle between covariance prediction updates
DCM33FlowMin(0.71f), // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high. DCM33FlowMin(0.71f), // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
fScaleFactorPnoise(1e-10f), // Process noise added to focal length scale factor state variance at each time step fScaleFactorPnoise(1e-10f), // Process noise added to focal length scale factor state variance at each time step
@ -401,7 +401,8 @@ NavEKF2::NavEKF2(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng) :
flowIntervalMax_ms(100), // maximum allowable time between flow fusion events flowIntervalMax_ms(100), // maximum allowable time between flow fusion events
gndEffectTimeout_ms(1000), // time in msec that baro ground effect compensation will timeout after initiation gndEffectTimeout_ms(1000), // time in msec that baro ground effect compensation will timeout after initiation
gndEffectBaroScaler(4.0f), // scaler applied to the barometer observation variance when operating in ground effect gndEffectBaroScaler(4.0f), // scaler applied to the barometer observation variance when operating in ground effect
gndGradientSigma(2) // RMS terrain gradient percentage assumed by the terrain height estimation gndGradientSigma(2), // RMS terrain gradient percentage assumed by the terrain height estimation
fusionTimeStep_ms(20) // The nominal number of msec between covariance prediction and fusion operations
{ {
AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info);
} }

View File

@ -297,6 +297,7 @@ private:
const uint16_t gndEffectTimeout_ms; // time in msec that ground effect mode is active after being activated const uint16_t gndEffectTimeout_ms; // time in msec that ground effect mode is active after being activated
const float gndEffectBaroScaler; // scaler applied to the barometer observation variance when ground effect mode is active const float gndEffectBaroScaler; // scaler applied to the barometer observation variance when ground effect mode is active
const uint8_t gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation const uint8_t gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation
const uint8_t fusionTimeStep_ms; // The nominal time interval between covariance predictions and measurement fusions in msec
}; };
#endif //AP_NavEKF2 #endif //AP_NavEKF2

View File

@ -118,6 +118,9 @@ void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRa
flowValidMeaTime_ms = imuSampleTime_ms; flowValidMeaTime_ms = imuSampleTime_ms;
// estimate sample time of the measurement // estimate sample time of the measurement
ofDataNew.time_ms = imuSampleTime_ms - frontend._flowDelay_ms - frontend.flowTimeDeltaAvg_ms/2; ofDataNew.time_ms = imuSampleTime_ms - frontend._flowDelay_ms - frontend.flowTimeDeltaAvg_ms/2;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
ofDataNew.time_ms = roundToNearest(ofDataNew.time_ms, frontend.fusionTimeStep_ms);
// Save data to buffer // Save data to buffer
StoreOF(); StoreOF();
// Check for data at the fusion time horizon // Check for data at the fusion time horizon
@ -193,6 +196,10 @@ void NavEKF2_core::readMagData()
// estimate of time magnetometer measurement was taken, allowing for delays // estimate of time magnetometer measurement was taken, allowing for delays
magMeasTime_ms = imuSampleTime_ms - frontend.magDelay_ms; magMeasTime_ms = imuSampleTime_ms - frontend.magDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
magMeasTime_ms = roundToNearest(magMeasTime_ms, frontend.fusionTimeStep_ms);
// read compass data and scale to improve numerical conditioning // read compass data and scale to improve numerical conditioning
magDataNew.mag = _ahrs->get_compass()->get_field() * 0.001f; magDataNew.mag = _ahrs->get_compass()->get_field() * 0.001f;
@ -358,6 +365,10 @@ void NavEKF2_core::readGpsData()
// ideally we should be using a timing signal from the GPS receiver to set this time // ideally we should be using a timing signal from the GPS receiver to set this time
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms; gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms);
// read the NED velocity from the GPS // read the NED velocity from the GPS
gpsDataNew.vel = _ahrs->get_gps().velocity(); gpsDataNew.vel = _ahrs->get_gps().velocity();
@ -495,6 +506,9 @@ void NavEKF2_core::readGpsData()
gpsDataNew.pos.x = lastKnownPositionNE.x; gpsDataNew.pos.x = lastKnownPositionNE.x;
gpsDataNew.pos.y = lastKnownPositionNE.y; gpsDataNew.pos.y = lastKnownPositionNE.y;
gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms; gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms);
// save measurement to buffer to be fused later // save measurement to buffer to be fused later
StoreGPS(); StoreGPS();
} }
@ -633,6 +647,10 @@ void NavEKF2_core::readHgtData()
// estimate of time height measurement was taken, allowing for delays // estimate of time height measurement was taken, allowing for delays
hgtMeasTime_ms = lastHgtReceived_ms - frontend._hgtDelay_ms; hgtMeasTime_ms = lastHgtReceived_ms - frontend._hgtDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
hgtMeasTime_ms = roundToNearest(hgtMeasTime_ms, frontend.fusionTimeStep_ms);
// save baro measurement to buffer to be fused later // save baro measurement to buffer to be fused later
baroDataNew.time_ms = hgtMeasTime_ms; baroDataNew.time_ms = hgtMeasTime_ms;
StoreBaro(); StoreBaro();
@ -696,6 +714,9 @@ void NavEKF2_core::readAirSpdData()
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS(); tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
timeTasReceived_ms = aspeed->last_update_ms(); timeTasReceived_ms = aspeed->last_update_ms();
tasDataNew.time_ms = timeTasReceived_ms - frontend.tasDelay_ms; tasDataNew.time_ms = timeTasReceived_ms - frontend.tasDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
tasDataNew.time_ms = roundToNearest(tasDataNew.time_ms, frontend.fusionTimeStep_ms);
newDataTas = true; newDataTas = true;
StoreTAS(); StoreTAS();
RecallTAS(); RecallTAS();
@ -704,4 +725,10 @@ void NavEKF2_core::readAirSpdData()
} }
} }
// Round to the nearest multiple of a integer
uint32_t NavEKF2_core::roundToNearest(uint32_t dividend, uint32_t divisor )
{
return ((uint32_t)round((float)dividend/float(divisor)))*divisor;
}
#endif // HAL_CPU_CLASS #endif // HAL_CPU_CLASS

View File

@ -593,6 +593,9 @@ private:
// using a simple observer // using a simple observer
void calcOutputStatesFast(); void calcOutputStatesFast();
// Round to the nearest multiple of a integer
uint32_t roundToNearest(uint32_t dividend, uint32_t divisor );
// measurement buffer sizes // measurement buffer sizes
static const uint32_t IMU_BUFFER_LENGTH = 100; // number of IMU samples stored in the buffer. Samples*delta_time must be > max sensor delay static const uint32_t IMU_BUFFER_LENGTH = 100; // number of IMU samples stored in the buffer. Samples*delta_time must be > max sensor delay
static const uint32_t OBS_BUFFER_LENGTH = 5; // number of non-IMU sensor samples stored in the buffer. static const uint32_t OBS_BUFFER_LENGTH = 5; // number of non-IMU sensor samples stored in the buffer.