HAL_ChibiOS: fixed race condition in storage write

we could mark a line as clean when it should be dirty if we lose a
race condition between storage thread and writer
This commit is contained in:
Andrew Tridgell 2020-05-11 13:30:26 +10:00
parent c42c7e40be
commit 32d8769823
2 changed files with 137 additions and 79 deletions

View File

@ -18,9 +18,12 @@
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "Storage.h"
#include "HAL_ChibiOS_Class.h"
#include "Scheduler.h"
#include "hwdef/common/flash.h"
#include <AP_Filesystem/AP_Filesystem.h>
#include "sdcard.h"
#include <stdio.h>
using namespace ChibiOS;
@ -41,49 +44,55 @@ extern const AP_HAL::HAL& hal;
#define STORAGE_FLASH_RETRIES 5
// by default don't allow fallback to sdcard for storage
#ifndef HAL_RAMTRON_ALLOW_FALLBACK
#define HAL_RAMTRON_ALLOW_FALLBACK 0
#endif
void Storage::_storage_open(void)
{
if (_initialised) {
if (_initialisedType != StorageBackend::None) {
return;
}
#ifdef USE_POSIX
// if we have failed filesystem init don't try again
if (log_fd == -1) {
return;
}
#endif
_dirty_mask.clearall();
#if HAL_WITH_RAMTRON
using_fram = fram.init();
if (using_fram) {
if (!fram.read(0, _buffer, CH_STORAGE_SIZE)) {
return;
}
if (fram.init() && fram.read(0, _buffer, CH_STORAGE_SIZE)) {
_save_backup();
_initialised = true;
_initialisedType = StorageBackend::FRAM;
::printf("Initialised Storage type=%d\n", _initialisedType);
return;
}
// allow for FMUv3 with no FRAM chip, fall through to flash storage
#if !HAL_RAMTRON_ALLOW_FALLBACK
AP_HAL::panic("Unable to init RAMTRON storage");
#endif
#endif // HAL_WITH_RAMTRON
// allow for devices with no FRAM chip to fall through to other storage
#ifdef STORAGE_FLASH_PAGE
// load from storage backend
_flash_load();
_save_backup();
_initialisedType = StorageBackend::Flash;
#elif defined(USE_POSIX)
// allow for fallback to microSD based storage
sdcard_retry();
// if we have failed filesystem init don't try again
if (log_fd == -1) {
return;
}
// use microSD based storage
if (sdcard_retry()) {
log_fd = AP::FS().open(HAL_STORAGE_FILE, O_RDWR|O_CREAT);
if (log_fd == -1) {
hal.console->printf("open failed of " HAL_STORAGE_FILE "\n");
::printf("open failed of " HAL_STORAGE_FILE "\n");
return;
}
int ret = AP::FS().read(log_fd, _buffer, CH_STORAGE_SIZE);
if (ret < 0) {
hal.console->printf("read failed for " HAL_STORAGE_FILE "\n");
::printf("read failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
@ -91,16 +100,21 @@ void Storage::_storage_open(void)
// pre-fill to full size
if (AP::FS().lseek(log_fd, ret, SEEK_SET) != ret ||
AP::FS().write(log_fd, &_buffer[ret], CH_STORAGE_SIZE-ret) != CH_STORAGE_SIZE-ret) {
hal.console->printf("setup failed for " HAL_STORAGE_FILE "\n");
::printf("setup failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
}
using_filesystem = true;
_save_backup();
_initialisedType = StorageBackend::SDCard;
}
#endif
_save_backup();
_initialised = true;
if (_initialisedType != StorageBackend::None) {
::printf("Initialised Storage type=%d\n", _initialisedType);
} else {
AP_HAL::panic("Unable to init Storage backend");
}
}
/*
@ -112,12 +126,13 @@ void Storage::_save_backup(void)
{
#ifdef USE_POSIX
// allow for fallback to microSD based storage
sdcard_retry();
if (sdcard_retry()) {
int fd = AP::FS().open(HAL_STORAGE_BACKUP_FILE, O_WRONLY|O_CREAT|O_TRUNC);
if (fd != -1) {
AP::FS().write(fd, _buffer, CH_STORAGE_SIZE);
AP::FS().close(fd);
}
}
#endif
}
@ -143,7 +158,7 @@ void Storage::_mark_dirty(uint16_t loc, uint16_t length)
void Storage::read_block(void *dst, uint16_t loc, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) {
return;
}
_storage_open();
@ -152,11 +167,12 @@ void Storage::read_block(void *dst, uint16_t loc, size_t n)
void Storage::write_block(uint16_t loc, const void *src, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) {
return;
}
if (memcmp(src, &_buffer[loc], n) != 0) {
_storage_open();
WITH_SEMAPHORE(sem);
memcpy(&_buffer[loc], src, n);
_mark_dirty(loc, n);
}
@ -164,7 +180,7 @@ void Storage::write_block(uint16_t loc, const void *src, size_t n)
void Storage::_timer_tick(void)
{
if (!_initialised) {
if (_initialisedType == StorageBackend::None) {
return;
}
if (_dirty_mask.empty()) {
@ -185,17 +201,24 @@ void Storage::_timer_tick(void)
return;
}
#if HAL_WITH_RAMTRON
if (using_fram) {
if (fram.write(CH_STORAGE_LINE_SIZE*i, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE)) {
_dirty_mask.clear(i);
{
// take a copy of the line we are writing with a semaphore held
WITH_SEMAPHORE(sem);
memcpy(tmpline, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE);
}
bool write_ok = false;
#if HAL_WITH_RAMTRON
if (_initialisedType == StorageBackend::FRAM) {
if (fram.write(CH_STORAGE_LINE_SIZE*i, tmpline, CH_STORAGE_LINE_SIZE)) {
write_ok = true;
}
return;
}
#endif
#ifdef USE_POSIX
if (using_filesystem && log_fd != -1) {
if ((_initialisedType == StorageBackend::SDCard) && log_fd != -1) {
uint32_t offset = CH_STORAGE_LINE_SIZE*i;
if (AP::FS().lseek(log_fd, offset, SEEK_SET) != offset) {
return;
@ -206,15 +229,31 @@ void Storage::_timer_tick(void)
if (AP::FS().fsync(log_fd) != 0) {
return;
}
_dirty_mask.clear(i);
return;
write_ok = true;
}
#endif
#ifdef STORAGE_FLASH_PAGE
if (_initialisedType == StorageBackend::Flash) {
// save to storage backend
_flash_write(i);
if (_flash_write(i)) {
write_ok = true;
}
}
#endif
if (write_ok) {
WITH_SEMAPHORE(sem);
// while holding the semaphore we check if the copy of the
// line is different from the original line. If it is
// different then someone has re-dirtied the line while we
// were writing it, in which case we should not mark it
// clean. If it matches then we know we can mark the line as
// clean
if (memcmp(tmpline, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE) == 0) {
_dirty_mask.clear(i);
}
}
}
/*
@ -225,26 +264,25 @@ void Storage::_flash_load(void)
#ifdef STORAGE_FLASH_PAGE
_flash_page = STORAGE_FLASH_PAGE;
hal.console->printf("Storage: Using flash pages %u and %u\n", _flash_page, _flash_page+1);
::printf("Storage: Using flash pages %u and %u\n", _flash_page, _flash_page+1);
if (!_flash.init()) {
AP_HAL::panic("unable to init flash storage");
AP_HAL::panic("Unable to init flash storage");
}
#else
AP_HAL::panic("unable to init storage");
AP_HAL::panic("Unable to init storage");
#endif
}
/*
write one storage line. This also updates _dirty_mask.
*/
void Storage::_flash_write(uint16_t line)
bool Storage::_flash_write(uint16_t line)
{
#ifdef STORAGE_FLASH_PAGE
if (_flash.write(line*CH_STORAGE_LINE_SIZE, CH_STORAGE_LINE_SIZE)) {
// mark the line clean
_dirty_mask.clear(line);
}
return _flash.write(line*CH_STORAGE_LINE_SIZE, CH_STORAGE_LINE_SIZE);
#else
return false;
#endif
}
@ -268,7 +306,7 @@ bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *
if (now - _last_re_init_ms > 5000) {
_last_re_init_ms = now;
bool ok = _flash.re_initialise();
hal.console->printf("Storage: failed at %u:%u for %u - re-init %u\n",
::printf("Storage: failed at %u:%u for %u - re-init %u\n",
(unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok);
}
}
@ -283,10 +321,14 @@ bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *
*/
bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length)
{
#ifdef STORAGE_FLASH_PAGE
size_t base_address = hal.flash->getpageaddr(_flash_page+sector);
const uint8_t *b = ((const uint8_t *)base_address)+offset;
memcpy(data, b, length);
return true;
#else
return false;
#endif
}
/*
@ -294,6 +336,9 @@ bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, u
*/
bool Storage::_flash_erase_sector(uint8_t sector)
{
#ifdef STORAGE_FLASH_PAGE
// erasing a page can take long enough that USB may not initialise properly if it happens
// while the host is connecting. Only do a flash erase if we have been up for more than 4s
for (uint8_t i=0; i<STORAGE_FLASH_RETRIES; i++) {
if (hal.flash->erasepage(_flash_page+sector)) {
return true;
@ -301,6 +346,9 @@ bool Storage::_flash_erase_sector(uint8_t sector)
hal.scheduler->delay(1);
}
return false;
#else
return false;
#endif
}
/*
@ -318,7 +366,8 @@ bool Storage::_flash_erase_ok(void)
*/
bool Storage::healthy(void)
{
return _initialised && AP_HAL::millis() - _last_empty_ms < 2000;
return ((_initialisedType != StorageBackend::None) &&
(AP_HAL::millis() - _last_empty_ms < 2000u));
}
#endif // HAL_USE_EMPTY_STORAGE

View File

@ -34,6 +34,9 @@
#define CH_STORAGE_LINE_SIZE (1<<CH_STORAGE_LINE_SHIFT)
#define CH_STORAGE_NUM_LINES (CH_STORAGE_SIZE/CH_STORAGE_LINE_SIZE)
static_assert(CH_STORAGE_SIZE % CH_STORAGE_LINE_SIZE == 0,
"Storage is not multiple of line size");
class ChibiOS::Storage : public AP_HAL::Storage {
public:
void init() override {}
@ -44,13 +47,21 @@ public:
bool healthy(void) override;
private:
volatile bool _initialised;
enum class StorageBackend: uint8_t {
None,
FRAM,
Flash,
SDCard,
};
StorageBackend _initialisedType = StorageBackend::None;
void _storage_create(void);
void _storage_open(void);
void _save_backup(void);
void _mark_dirty(uint16_t loc, uint16_t length);
uint8_t _buffer[CH_STORAGE_SIZE] __attribute__((aligned(4)));
Bitmask<CH_STORAGE_NUM_LINES> _dirty_mask;
HAL_Semaphore sem;
uint8_t tmpline[CH_STORAGE_LINE_SIZE];
bool _flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length);
bool _flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length);
@ -71,14 +82,12 @@ private:
#endif
void _flash_load(void);
void _flash_write(uint16_t line);
bool _flash_write(uint16_t line);
#if HAL_WITH_RAMTRON
AP_RAMTRON fram;
bool using_fram;
#endif
#ifdef USE_POSIX
bool using_filesystem;
int log_fd;
#endif
};