AC_Autotune: tradheli use dwell for FF test

This commit is contained in:
bnsgeyer 2024-04-04 21:42:18 -04:00 committed by Bill Geyer
parent dd1f0cdcf7
commit 32af6216b7
2 changed files with 44 additions and 250 deletions

View File

@ -141,8 +141,19 @@ void AC_AutoTune_Heli::test_init()
{ {
switch (tune_type) { switch (tune_type) {
case RFF_UP: case RFF_UP:
rate_ff_test_init(); freq_cnt = 12;
step_time_limit_ms = 10000; test_freq[freq_cnt] = 0.25f * 3.14159f * 2.0f;
curr_test.freq = test_freq[freq_cnt];
start_freq = curr_test.freq;
stop_freq = curr_test.freq;
attitude_control->bf_feedforward(false);
attitude_control->use_sqrt_controller(false);
freqresp.init(AC_AutoTune_FreqResp::InputType::DWELL, AC_AutoTune_FreqResp::ResponseType::RATE);
dwell_test_init(start_freq, stop_freq, start_freq, RATE);
step_time_limit_ms = (uint32_t) 23000;
break; break;
case MAX_GAINS: case MAX_GAINS:
case RP_UP: case RP_UP:
@ -292,7 +303,7 @@ void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
switch (tune_type) { switch (tune_type) {
case RFF_UP: case RFF_UP:
rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign); dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt], RATE);
break; break;
case RP_UP: case RP_UP:
case RD_UP: case RD_UP:
@ -324,6 +335,7 @@ void AC_AutoTune_Heli::do_gcs_announcements()
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: %s %s", axis_string(), type_string()); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: %s %s", axis_string(), type_string());
send_step_string(); send_step_string();
switch (tune_type) { switch (tune_type) {
case RFF_UP:
case RD_UP: case RD_UP:
case RP_UP: case RP_UP:
case MAX_GAINS: case MAX_GAINS:
@ -381,9 +393,6 @@ void AC_AutoTune_Heli::do_post_test_gcs_announcements() {
if (step == UPDATE_GAINS) { if (step == UPDATE_GAINS) {
switch (tune_type) { switch (tune_type) {
case RFF_UP: case RFF_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt));
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
break;
case RP_UP: case RP_UP:
case RD_UP: case RD_UP:
case SP_UP: case SP_UP:
@ -396,6 +405,8 @@ void AC_AutoTune_Heli::do_post_test_gcs_announcements() {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_p=%f", (double)(tune_rp)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_p=%f", (double)(tune_rp));
} else if (tune_type == RD_UP) { } else if (tune_type == RD_UP) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_d=%f", (double)(tune_rd)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_d=%f", (double)(tune_rd));
} else if (tune_type == RFF_UP) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_ff=%f", (double)(tune_rff));
} else if (tune_type == SP_UP) { } else if (tune_type == SP_UP) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: angle_p=%f tune_accel=%f max_accel=%f", (double)(tune_sp), (double)(tune_accel), (double)(test_accel_max)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: angle_p=%f tune_accel=%f max_accel=%f", (double)(tune_sp), (double)(tune_accel), (double)(test_accel_max));
} }
@ -716,203 +727,6 @@ void AC_AutoTune_Heli::report_axis_gains(const char* axis_string, float rate_P,
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Angle P:%0.2f, Max Accel:%0.0f",axis_string,angle_P,max_accel); gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Angle P:%0.2f, Max Accel:%0.0f",axis_string,angle_P,max_accel);
} }
void AC_AutoTune_Heli::rate_ff_test_init()
{
ff_test_phase = 0;
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(5.0f);
command_filt.reset(0);
command_filt.set_cutoff_frequency(5.0f);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(5.0f);
test_command_filt = 0.0f;
test_rate_filt = 0.0f;
test_tgt_rate_filt = 0.0f;
filt_target_rate = 0.0f;
settle_time = 200;
phase_out_time = 500;
rate_request_cds.reset(0);
rate_request_cds.set_cutoff_frequency(1.0f);
angle_request_cd.reset(0);
angle_request_cd.set_cutoff_frequency(1.0f);
}
void AC_AutoTune_Heli::rate_ff_test_run(float max_angle_cd, float target_rate_cds, float dir_sign)
{
float gyro_reading = 0.0f;
float command_reading =0.0f;
float tgt_rate_reading = 0.0f;
const uint32_t now = AP_HAL::millis();
target_rate_cds = dir_sign * target_rate_cds;
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
command_reading = motors->get_roll();
tgt_rate_reading = attitude_control->rate_bf_targets().x;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_roll();
rate_request_cds.reset(gyro_reading);
} else if (((ahrs_view->roll_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f);
} else if (((ahrs_view->roll_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds.get());
} else if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds.get());
} else if (((ahrs_view->roll_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
attitude_control->reset_target_and_rate(false);
angle_request_cd.reset(ahrs_view->roll_sensor);
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd.get(), start_angles.y, 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd.apply(start_angles.x, AP::scheduler().get_loop_period_s());
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd.get(), start_angles.y, 0.0f);
phase_out_time--;
}
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
command_reading = motors->get_pitch();
tgt_rate_reading = attitude_control->rate_bf_targets().y;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_pitch();
rate_request_cds.reset(gyro_reading);
} else if (((ahrs_view->pitch_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f);
} else if (((ahrs_view->pitch_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds.get());
} else if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds.get());
} else if (((ahrs_view->pitch_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
attitude_control->reset_target_and_rate(false);
angle_request_cd.reset(ahrs_view->pitch_sensor);
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd.get(), 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd.apply(start_angles.y, AP::scheduler().get_loop_period_s());
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd.get(), 0.0f);
phase_out_time--;
}
break;
case YAW:
case YAW_D:
gyro_reading = ahrs_view->get_gyro().z;
command_reading = motors->get_yaw();
tgt_rate_reading = attitude_control->rate_bf_targets().z;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_yaw();
trim_heading = ahrs_view->yaw_sensor;
rate_request_cds.reset(gyro_reading);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get());
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get());
attitude_control->rate_bf_yaw_target(rate_request_cds.get());
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s());
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get());
attitude_control->rate_bf_yaw_target(rate_request_cds.get());
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
attitude_control->reset_yaw_target_and_rate(false);
angle_request_cd.reset(wrap_180_cd(ahrs_view->yaw_sensor - trim_heading));
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd.get(), false);
} else if (ff_test_phase == 2 ) {
angle_request_cd.apply(0.0f, AP::scheduler().get_loop_period_s());
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, wrap_360_cd(trim_heading + angle_request_cd.get()), false);
}
break;
}
rotation_rate = rotation_rate_filt.apply(gyro_reading,
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - trim_command_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply(tgt_rate_reading,
AP::scheduler().get_loop_period_s());
// record steady state rate and motor command
switch (axis) {
case ROLL:
if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case PITCH:
if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case YAW:
case YAW_D:
if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
}
if (now - step_start_time_ms >= step_time_limit_ms || (ff_test_phase == 2 && phase_out_time == 0)) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
void AC_AutoTune_Heli::dwell_test_init(float start_frq, float stop_frq, float filt_freq, DwellType dwell_type) void AC_AutoTune_Heli::dwell_test_init(float start_frq, float stop_frq, float filt_freq, DwellType dwell_type)
{ {
dwell_start_time_ms = 0.0f; dwell_start_time_ms = 0.0f;
@ -1152,14 +966,14 @@ void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis)
{ {
switch (test_axis) { switch (test_axis) {
case ROLL: case ROLL:
updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); updating_rate_ff_up(tune_roll_rff, test_freq, test_gain, test_phase, freq_cnt);
break; break;
case PITCH: case PITCH:
updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); updating_rate_ff_up(tune_pitch_rff, test_freq, test_gain, test_phase, freq_cnt);
break; break;
case YAW: case YAW:
case YAW_D: case YAW_D:
updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); updating_rate_ff_up(tune_yaw_rff, test_freq, test_gain, test_phase, freq_cnt);
// TODO make FF updating routine determine when to set rff gain to zero based on A/C response // TODO make FF updating routine determine when to set rff gain to zero based on A/C response
if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) { if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) {
tune_yaw_rff = 0.0f; tune_yaw_rff = 0.0f;
@ -1266,45 +1080,32 @@ void AC_AutoTune_Heli::set_gains_post_tune(AxisType test_axis)
// updating_rate_ff_up - adjust FF to ensure the target is reached // updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is achieved // FF is adjusted until rate requested is achieved
void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command) void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
{ {
float test_freq_incr = 0.05f * 3.14159f * 2.0f;
if (ff_up_first_iter) { if (phase[frq_cnt] > 15.0f) {
if (!is_zero(meas_rate)) { curr_test.freq = curr_test.freq - test_freq_incr;
tune_ff = 5730.0f * meas_command / meas_rate; freq[frq_cnt] = curr_test.freq;
} } else if (phase[frq_cnt] < 0.0f) {
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); curr_test.freq = curr_test.freq + test_freq_incr;
ff_up_first_iter = false; freq[frq_cnt] = curr_test.freq;
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) &&
fabsf(meas_rate) > 0.95f * fabsf(rate_target)) {
if (!first_dir_complete) {
first_dir_rff = tune_ff;
first_dir_complete = true;
positive_direction = !positive_direction;
} else { } else {
if ((gain[frq_cnt] > 0.1 && gain[frq_cnt] < 0.95) || gain[frq_cnt] > 1.0) {
tune_ff = tune_ff / gain[frq_cnt] ;
} else if (gain[frq_cnt] >= 0.95 && gain[frq_cnt] <= 1.0) {
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
tune_ff = 0.95f * 0.5 * (tune_ff + first_dir_rff); // reset curr_test.freq and frq_cnt for next test
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); curr_test.freq = freq[0];
frq_cnt = 0;
} }
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) {
tune_ff = 0.98f * tune_ff;
if (tune_ff <= AUTOTUNE_RFF_MIN) {
tune_ff = AUTOTUNE_RFF_MIN;
counter = AUTOTUNE_SUCCESS_COUNT;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) {
tune_ff = 1.02f * tune_ff;
if (tune_ff >= AUTOTUNE_RFF_MAX) {
tune_ff = AUTOTUNE_RFF_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_REACHED_LIMIT);
} }
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else { } else {
if (!is_zero(meas_rate)) { start_freq = curr_test.freq;
tune_ff = 5730.0f * meas_command / meas_rate; stop_freq = curr_test.freq;
}
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
} }
} }

View File

@ -180,7 +180,7 @@ private:
// updating_rate_ff_up - adjust FF to ensure the target is reached // updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is achieved // FF is adjusted until rate requested is achieved
void updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command); void updating_rate_ff_up(float &tune_ff, float *freq, float *gain, float *phase, uint8_t &frq_cnt);
// updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain // updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain
void updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p); void updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p);
@ -238,11 +238,7 @@ private:
// previous gain // previous gain
float rd_prev_gain; float rd_prev_gain;
uint8_t ff_test_phase; // phase of feedforward test
float test_command_filt; // filtered commanded output for FF test analysis
float test_rate_filt; // filtered rate output for FF test analysis
float command_out; // test axis command output float command_out; // test axis command output
float test_tgt_rate_filt; // filtered target rate for FF test analysis
float filt_target_rate; // filtered target rate float filt_target_rate; // filtered target rate
float test_gain[20]; // frequency response gain for each dwell test iteration float test_gain[20]; // frequency response gain for each dwell test iteration
float test_freq[20]; // frequency of each dwell test iteration float test_freq[20]; // frequency of each dwell test iteration
@ -260,14 +256,11 @@ private:
Vector3f start_angles; // aircraft attitude at the start of test Vector3f start_angles; // aircraft attitude at the start of test
uint32_t settle_time; // time in ms for allowing aircraft to stabilize before initiating test uint32_t settle_time; // time in ms for allowing aircraft to stabilize before initiating test
uint32_t phase_out_time; // time in ms to phase out response
float trim_meas_rate; // trim measured gyro rate float trim_meas_rate; // trim measured gyro rate
//variables from rate FF test //variables from rate FF test
float trim_command_reading; float trim_command_reading;
float trim_heading; float trim_heading;
LowPassFilterFloat rate_request_cds;
LowPassFilterFloat angle_request_cd;
// variables from dwell test // variables from dwell test
LowPassFilterVector2f filt_att_fdbk_from_velxy_cd; LowPassFilterVector2f filt_att_fdbk_from_velxy_cd;