mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 02:18:29 -04:00
uncrustify libraries/APM_RC/APM_RC_APM1.cpp
This commit is contained in:
parent
e0dea4c976
commit
323bc2fb1b
@ -1,34 +1,34 @@
|
||||
/*
|
||||
APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
* APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
||||
* Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* RC Input : PPM signal on IC4 pin
|
||||
* RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
*
|
||||
* Methods:
|
||||
* Init() : Initialization of interrupts an Timers
|
||||
* OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
* InputCh(ch) : Read a channel input value. ch=0..7
|
||||
* GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
* Automatically resets when we call InputCh to read channels
|
||||
*
|
||||
*/
|
||||
#include "APM_RC_APM1.h"
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
#include "Arduino.h"
|
||||
#include "Arduino.h"
|
||||
#else
|
||||
#include "WProgram.h"
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
||||
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
||||
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
||||
#else
|
||||
|
||||
// Variable definition for Input Capture interrupt
|
||||
@ -36,37 +36,37 @@ volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,240
|
||||
volatile uint8_t APM_RC_APM1::_radio_status=0;
|
||||
|
||||
/****************************************************
|
||||
Input Capture Interrupt ICP4 => PPM signal read
|
||||
****************************************************/
|
||||
* Input Capture Interrupt ICP4 => PPM signal read
|
||||
****************************************************/
|
||||
void APM_RC_APM1::_timer4_capt_cb(void)
|
||||
{
|
||||
static uint16_t ICR4_old;
|
||||
static uint8_t PPM_Counter=0;
|
||||
static uint16_t ICR4_old;
|
||||
static uint8_t PPM_Counter=0;
|
||||
|
||||
uint16_t Pulse;
|
||||
uint16_t Pulse_Width;
|
||||
uint16_t Pulse;
|
||||
uint16_t Pulse_Width;
|
||||
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
|
||||
}
|
||||
else {
|
||||
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
|
||||
}
|
||||
|
||||
if (Pulse_Width>8000) { // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
}
|
||||
else {
|
||||
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
|
||||
_PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
|
||||
|
||||
if (PPM_Counter >= NUM_CHANNELS) {
|
||||
_radio_status = 1;
|
||||
}
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
|
||||
}
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
else {
|
||||
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
|
||||
}
|
||||
|
||||
if (Pulse_Width>8000) { // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
}
|
||||
else {
|
||||
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
|
||||
_PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
|
||||
|
||||
if (PPM_Counter >= NUM_CHANNELS) {
|
||||
_radio_status = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
}
|
||||
|
||||
|
||||
@ -80,69 +80,69 @@ APM_RC_APM1::APM_RC_APM1()
|
||||
void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg )
|
||||
{
|
||||
|
||||
isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb );
|
||||
isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb );
|
||||
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
OCR1A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR1B = 0xFFFF;
|
||||
OCR1C = 0xFFFF;
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
OCR1A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR1B = 0xFFFF;
|
||||
OCR1C = 0xFFFF;
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
OCR3A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR3B = 0xFFFF;
|
||||
OCR3C = 0xFFFF;
|
||||
ICR3 = 40000; //50hz freq
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
OCR3A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR3B = 0xFFFF;
|
||||
OCR3C = 0xFFFF;
|
||||
ICR3 = 40000; //50hz freq
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
|
||||
|
||||
TCCR5A =((1<<WGM51));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
OCR5A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR5B = 0xFFFF;
|
||||
OCR5C = 0xFFFF;
|
||||
ICR5 = 40000; //50hz freq
|
||||
TCCR5A =((1<<WGM51));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
OCR5A = 0xFFFF; // Init ODR registers to nil output signal
|
||||
OCR5B = 0xFFFF;
|
||||
OCR5C = 0xFFFF;
|
||||
ICR5 = 40000; //50hz freq
|
||||
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
OCR4B = 0xFFFF; // Init OCR registers to nil output signal
|
||||
OCR4C = 0xFFFF;
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
OCR4B = 0xFFFF; // Init OCR registers to nil output signal
|
||||
OCR4C = 0xFFFF;
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
}
|
||||
|
||||
void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm)
|
||||
{
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch)
|
||||
{
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR5B=pwm; break; //ch1
|
||||
case 1: OCR5C=pwm; break; //ch2
|
||||
case 2: OCR1B=pwm; break; //ch3
|
||||
@ -154,31 +154,31 @@ void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm)
|
||||
case 8: OCR5A=pwm; break; //ch9, PL3
|
||||
case 9: OCR1A=pwm; break; //ch10, PB5
|
||||
case 10: OCR3A=pwm; break; //ch11, PE3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_APM1::OutputCh_current(uint8_t ch)
|
||||
{
|
||||
uint16_t pwm=0;
|
||||
switch(ch) {
|
||||
case 0: pwm=OCR5B; break; //ch1
|
||||
case 1: pwm=OCR5C; break; //ch2
|
||||
case 2: pwm=OCR1B; break; //ch3
|
||||
case 3: pwm=OCR1C; break; //ch4
|
||||
case 4: pwm=OCR4C; break; //ch5
|
||||
case 5: pwm=OCR4B; break; //ch6
|
||||
case 6: pwm=OCR3C; break; //ch7
|
||||
case 7: pwm=OCR3B; break; //ch8
|
||||
case 8: pwm=OCR5A; break; //ch9, PL3
|
||||
case 9: pwm=OCR1A; break; //ch10, PB5
|
||||
case 10: pwm=OCR3A; break; //ch11, PE3
|
||||
}
|
||||
return pwm>>1;
|
||||
uint16_t pwm=0;
|
||||
switch(ch) {
|
||||
case 0: pwm=OCR5B; break; //ch1
|
||||
case 1: pwm=OCR5C; break; //ch2
|
||||
case 2: pwm=OCR1B; break; //ch3
|
||||
case 3: pwm=OCR1C; break; //ch4
|
||||
case 4: pwm=OCR4C; break; //ch5
|
||||
case 5: pwm=OCR4B; break; //ch6
|
||||
case 6: pwm=OCR3C; break; //ch7
|
||||
case 7: pwm=OCR3B; break; //ch8
|
||||
case 8: pwm=OCR5A; break; //ch9, PL3
|
||||
case 9: pwm=OCR1A; break; //ch10, PB5
|
||||
case 10: pwm=OCR3A; break; //ch11, PE3
|
||||
}
|
||||
return pwm>>1;
|
||||
}
|
||||
|
||||
void APM_RC_APM1::enable_out(uint8_t ch)
|
||||
{
|
||||
switch(ch){
|
||||
switch(ch) {
|
||||
case 0: TCCR5A |= (1<<COM5B1); break; // CH_1 : OC5B
|
||||
case 1: TCCR5A |= (1<<COM5C1); break; // CH_2 : OC5C
|
||||
case 2: TCCR1A |= (1<<COM1B1); break; // CH_3 : OC1B
|
||||
@ -190,12 +190,12 @@ void APM_RC_APM1::enable_out(uint8_t ch)
|
||||
case 8: TCCR5A |= (1<<COM5A1); break; // CH_9 : OC5A
|
||||
case 9: TCCR1A |= (1<<COM1A1); break; // CH_10: OC1A
|
||||
case 10: TCCR3A |= (1<<COM3A1); break; // CH_11: OC3A
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void APM_RC_APM1::disable_out(uint8_t ch)
|
||||
{
|
||||
switch(ch){
|
||||
switch(ch) {
|
||||
case 0: TCCR5A &= ~(1<<COM5B1); break; // CH_1 : OC5B
|
||||
case 1: TCCR5A &= ~(1<<COM5C1); break; // CH_2 : OC5C
|
||||
case 2: TCCR1A &= ~(1<<COM1B1); break; // CH_3 : OC1B
|
||||
@ -207,34 +207,34 @@ void APM_RC_APM1::disable_out(uint8_t ch)
|
||||
case 8: TCCR5A &= ~(1<<COM5A1); break; // CH_9 : OC5A
|
||||
case 9: TCCR1A &= ~(1<<COM1A1); break; // CH_10: OC1A
|
||||
case 10: TCCR3A &= ~(1<<COM3A1); break; // CH_11: OC3A
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t APM_RC_APM1::InputCh(uint8_t ch)
|
||||
{
|
||||
uint16_t result;
|
||||
uint16_t result;
|
||||
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
if (_HIL_override[ch] != 0) {
|
||||
return _HIL_override[ch];
|
||||
}
|
||||
|
||||
// we need to stop interrupts to be sure we get a correct 16 bit value
|
||||
cli();
|
||||
result = _PWM_RAW[ch];
|
||||
sei();
|
||||
// we need to stop interrupts to be sure we get a correct 16 bit value
|
||||
cli();
|
||||
result = _PWM_RAW[ch];
|
||||
sei();
|
||||
|
||||
// Because timer runs at 0.5us we need to do value/2
|
||||
result >>= 1;
|
||||
// Because timer runs at 0.5us we need to do value/2
|
||||
result >>= 1;
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
_radio_status = 0; // Radio channel read
|
||||
return result;
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
_radio_status = 0; // Radio channel read
|
||||
return result;
|
||||
}
|
||||
|
||||
uint8_t APM_RC_APM1::GetState(void)
|
||||
{
|
||||
return(_radio_status);
|
||||
return(_radio_status);
|
||||
}
|
||||
|
||||
|
||||
@ -248,51 +248,51 @@ void APM_RC_APM1::Force_Out(void)
|
||||
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out0_Out1(void)
|
||||
{
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
||||
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out2_Out3(void)
|
||||
{
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
if (TCNT1>5000)
|
||||
TCNT1=39990;
|
||||
}
|
||||
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
|
||||
void APM_RC_APM1::Force_Out6_Out7(void)
|
||||
{
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
if (TCNT3>5000)
|
||||
TCNT3=39990;
|
||||
}
|
||||
|
||||
/* --------------------- OUTPUT SPEED CONTROL --------------------- */
|
||||
|
||||
void APM_RC_APM1::SetFastOutputChannels(uint32_t chmask, uint16_t speed_hz)
|
||||
{
|
||||
uint16_t icr = _map_speed(speed_hz);
|
||||
uint16_t icr = _map_speed(speed_hz);
|
||||
|
||||
if ((chmask & ( _BV(CH_1) | _BV(CH_2) | _BV(CH_9))) != 0) {
|
||||
ICR1 = icr;
|
||||
}
|
||||
if ((chmask & ( _BV(CH_1) | _BV(CH_2) | _BV(CH_9))) != 0) {
|
||||
ICR1 = icr;
|
||||
}
|
||||
|
||||
if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_10))) != 0) {
|
||||
ICR5 = icr;
|
||||
}
|
||||
if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_10))) != 0) {
|
||||
ICR5 = icr;
|
||||
}
|
||||
|
||||
#if 0
|
||||
if ((chmask & ( _BV(CH_5) | _BV(CH_6))) != 0) {
|
||||
/* These channels intentionally left blank:
|
||||
* Can't change output speed of ch5 (OCR4B) and ch6 (OCR4C).
|
||||
* Timer 4 period controlled by OCR4A, and used for input
|
||||
* capture on ICR4.
|
||||
* If the period of Timer 4 must be changed, the input capture
|
||||
* code will have to be adjusted as well
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
#if 0
|
||||
if ((chmask & ( _BV(CH_5) | _BV(CH_6))) != 0) {
|
||||
/* These channels intentionally left blank:
|
||||
* Can't change output speed of ch5 (OCR4B) and ch6 (OCR4C).
|
||||
* Timer 4 period controlled by OCR4A, and used for input
|
||||
* capture on ICR4.
|
||||
* If the period of Timer 4 must be changed, the input capture
|
||||
* code will have to be adjusted as well
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((chmask & ( _BV(CH_7) | _BV(CH_8) | _BV(CH_11))) != 0) {
|
||||
ICR3 = icr;
|
||||
}
|
||||
if ((chmask & ( _BV(CH_7) | _BV(CH_8) | _BV(CH_11))) != 0) {
|
||||
ICR3 = icr;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -301,28 +301,28 @@ void APM_RC_APM1::SetFastOutputChannels(uint32_t chmask, uint16_t speed_hz)
|
||||
// A value of 0 means no override, use the real RC values
|
||||
bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS])
|
||||
{
|
||||
uint8_t sum = 0;
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
if (_HIL_override[i] != 0) {
|
||||
sum++;
|
||||
}
|
||||
}
|
||||
_radio_status = 1;
|
||||
if (sum == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
uint8_t sum = 0;
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
if (v[i] != -1) {
|
||||
_HIL_override[i] = v[i];
|
||||
}
|
||||
if (_HIL_override[i] != 0) {
|
||||
sum++;
|
||||
}
|
||||
}
|
||||
_radio_status = 1;
|
||||
if (sum == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
void APM_RC_APM1::clearOverride(void)
|
||||
{
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
_HIL_override[i] = 0;
|
||||
}
|
||||
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
|
||||
_HIL_override[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user