This commit is contained in:
Chris Anderson 2011-12-31 09:50:33 -08:00
commit 31765310ac
9 changed files with 93 additions and 88 deletions

View File

@ -69,6 +69,3 @@
// enable this for the new 'APM2' hardware
// #define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
// #define APM2_BETA_HARDWARE // for developers who received an early beta board with the older BMP085
#define LOITER_METHOD 0
// set to 1 to try an alternative Loiter control method

View File

@ -1,6 +1,6 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.1.1r3 alpha"
#define THISFIRMWARE "ArduCopter V2.1.1r4 alpha"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
@ -366,6 +366,7 @@ static bool nav_ok;
static const float radius_of_earth = 6378100; // meters
static const float gravity = 9.81; // meters/ sec^2
static int32_t target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static int32_t nav_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static int32_t home_bearing; // used to track difference in angle
static byte wp_control; // used to control - navgation or loiter
@ -1390,8 +1391,6 @@ static void update_navigation()
// reset LOITER to current position
next_WP = current_loc;
// clear Loiter Iterms
reset_nav();
}else{
// this is also set by GPS in update_nav
wp_control = LOITER_MODE;
@ -1762,7 +1761,8 @@ static void update_nav_wp()
// use error as the desired rate towards the target
calc_nav_rate(g.waypoint_speed_max);
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
//calc_nav_pitch_roll();
calc_loiter_pitch_roll();
}else if(wp_control == NO_NAV_MODE){
nav_roll = 0;
@ -1772,11 +1772,16 @@ static void update_nav_wp()
static void update_auto_yaw()
{
// If we Loiter, don't start Yawing, allow Yaw control
if(wp_control == LOITER_MODE)
return;
// this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){
auto_yaw = get_bearing(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT){
// Point towards next WP
auto_yaw = target_bearing;
}
// MAV_ROI_NONE = basic Yaw hold

View File

@ -243,8 +243,8 @@ static void reset_nav(void)
g.pi_nav_lon.reset_I();
// considering not reseting wind control
//g.pi_loiter_lat.reset_I();
//g.pi_loiter_lon.reset_I();
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
circle_angle = 0;
crosstrack_error = 0;

View File

@ -116,12 +116,12 @@ static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
chan,
nav_roll / 1.0e2,
nav_pitch / 1.0e2,
nav_bearing / 1.0e2,
target_bearing / 1.0e2,
dcm.yaw_sensor / 1.0e2, // was target_bearing
wp_distance,
altitude_error / 1.0e2,
nav_lon, // was 0
nav_lat); // was 0
0,
crosstrack_error); // was 0
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)

View File

@ -329,7 +329,7 @@ public:
waypoint_radius (WP_RADIUS_DEFAULT, k_param_waypoint_radius, PSTR("WP_RADIUS")),
loiter_radius (LOITER_RADIUS, k_param_loiter_radius, PSTR("WP_LOITER_RAD")),
waypoint_speed_max (WAYPOINT_SPEED_MAX, k_param_waypoint_speed_max, PSTR("WP_SPEED_MAX")),
crosstrack_gain (CROSSTRACK_GAIN, k_param_crosstrack_gain, PSTR("XTRK_GAIN_SC")),
crosstrack_gain (CROSSTRACK_GAIN * 100, k_param_crosstrack_gain, PSTR("XTRK_GAIN_SC")),
throttle_min (0, k_param_throttle_min, PSTR("THR_MIN")),
throttle_max (1000, k_param_throttle_max, PSTR("THR_MAX")),

View File

@ -8,6 +8,9 @@ static void init_commands()
prev_nav_index = NO_COMMAND;
command_cond_queue.id = NO_COMMAND;
command_nav_queue.id = NO_COMMAND;
// default Yaw tracking
yaw_tracking = MAV_ROI_WPNEXT;
}
// Getters
@ -176,6 +179,7 @@ static void set_next_WP(struct Location *wp)
wp_totalDistance = get_distance(&current_loc, &next_WP);
wp_distance = wp_totalDistance;
target_bearing = get_bearing(&prev_WP, &next_WP);
nav_bearing = target_bearing;
// to check if we have missed the WP
// ---------------------------------

View File

@ -122,7 +122,7 @@ static void execute_nav_command(void)
process_nav_command();
// clear navigation prameters
reset_nav();
//reset_nav();
// clear May indexes to force loading of more commands
// existing May commands are tossed.

View File

@ -508,7 +508,7 @@
#ifndef STABILIZE_D
# define STABILIZE_D .25
# define STABILIZE_D .2
#endif
// Jasons default values that are good for smaller payload motors.
@ -606,17 +606,17 @@
// Navigation control gains
//
#ifndef LOITER_P
# define LOITER_P .2 // .3 was too aggressive
# define LOITER_P .25 //
#endif
#ifndef LOITER_I
# define LOITER_I 0.05 // Wind control
# define LOITER_I 0.1 // Wind control
#endif
#ifndef LOITER_IMAX
# define LOITER_IMAX 30 // degrees°
#endif
#ifndef NAV_P
# define NAV_P 1.5 // 3 was causing rapid oscillations in Loiter
# define NAV_P 2.2 // 3 was causing rapid oscillations in Loiter
#endif
#ifndef NAV_I
# define NAV_I 0.15 // used in traverals
@ -649,7 +649,7 @@
// RATE control
#ifndef THROTTLE_P
# define THROTTLE_P 0.4 //
# define THROTTLE_P 0.5 //
#endif
#ifndef THROTTLE_I
# define THROTTLE_I 0.0 //
@ -663,7 +663,7 @@
// Crosstrack compensation
//
#ifndef CROSSTRACK_GAIN
# define CROSSTRACK_GAIN 40
# define CROSSTRACK_GAIN 1
#endif

View File

@ -22,6 +22,10 @@ static byte navigate()
target_bearing = get_bearing(&current_loc, &next_WP);
home_to_copter_bearing = get_bearing(&home, &current_loc);
// nav_bearing will includes xtrac correction
// ------------------------------------------
nav_bearing = target_bearing;
return 1;
}
@ -55,13 +59,16 @@ static void calc_XY_velocity(){
x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4;
y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4;
if(g_gps->ground_speed > 120){
// Above simply works better than GPS groundspeed
// which is proving to be problematic
/*if(g_gps->ground_speed > 120){
// Derive X/Y speed from GPS
// this is far more accurate when traveling about 1.5m/s
float temp = g_gps->ground_course * RADX100;
x_GPS_speed = sin(temp) * (float)g_gps->ground_speed;
y_GPS_speed = cos(temp) * (float)g_gps->ground_speed;
}
}*/
last_longitude = g_gps->longitude;
last_latutude = g_gps->latitude;
@ -110,7 +117,7 @@ static void calc_loiter(int x_error, int y_error)
nav_lat_p = constrain(nav_lat_p, -3500, 3500);
nav_lat = nav_lat_p + y_iterm;
///*
/*
int8_t ttt = 1.0/dTnav;
int16_t t2 = g.pi_nav_lat.get_integrator();
@ -119,6 +126,7 @@ static void calc_loiter(int x_error, int y_error)
wp_distance, //1
y_error, //2
y_GPS_speed, //3
y_actual_speed, //4 ;
y_target_speed, //5
y_rate_error, //6
@ -152,16 +160,24 @@ static void calc_loiter(int x_error, int y_error)
static void estimate_velocity()
{
// we need to extimate velocity when below GPS threshold of 1.5m/s
if(g_gps->ground_speed < 150){
//if(g_gps->ground_speed < 120){
// some smoothing to prevent bumpy rides
x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16;
y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16;
}else{
// integration of nav_p angle
//x_actual_speed += (nav_lon_p >>2);
//y_actual_speed += (nav_lat_p >>2);
// this is just what worked best in SIM
//x_actual_speed = (x_actual_speed * 2 + x_GPS_speed * 1) / 4;
//y_actual_speed = (y_actual_speed * 2 + y_GPS_speed * 1) / 4;
//}else{
// less smoothing needed since the GPS already filters
x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4;
y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4;
}
// x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4;
// y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4;
//}
}
// this calculation rotates our World frame of reference to the copter's frame of reference
@ -206,32 +222,47 @@ static void calc_nav_rate(int max_speed)
max_speed = min(max_speed, waypoint_speed_gov);
}
float temp = (target_bearing - g_gps->ground_course) * RADX100;
// push us towards the original track
update_crosstrack();
// nav_bearing includes crosstrack
float temp = (9000 - nav_bearing) * RADX100;
// heading laterally, we want a zero speed here
x_actual_speed = -sin(temp) * (float)g_gps->ground_speed;
x_rate_error = crosstrack_error -x_actual_speed;
//x_actual_speed = -sin(temp) * (float)g_gps->ground_speed;
x_rate_error = (cos(temp) * max_speed) - x_actual_speed; // 413
x_rate_error = constrain(x_rate_error, -1400, 1400);
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
/*Serial.printf("max_sp %d,\tx_actual_sp %d,\tx_rate_err: %d, Xtrack %d, \tnav_lon: %d,\ty_actual_sp %d,\ty_rate_err: %d,\tnav_lat: %d,\n",
max_speed,
x_actual_speed,
x_rate_error,
crosstrack_error,
nav_lon,
y_actual_speed,
y_rate_error,
nav_lat);
//*/
int16_t x_iterm = g.pi_loiter_lon.get_i(x_rate_error, dTnav);
nav_lon_p = g.pi_nav_lon.get_p(x_rate_error);
nav_lon_p = constrain(nav_lon_p, -3500, 3500);
nav_lon = nav_lon_p + x_iterm;
// heading towards target
y_actual_speed = cos(temp) * (float)g_gps->ground_speed;
y_rate_error = max_speed - y_actual_speed; // 413
//y_actual_speed = cos(temp) * (float)g_gps->ground_speed;
y_rate_error = (sin(temp) * max_speed) - y_actual_speed; // 413
y_rate_error = constrain(y_rate_error, -1400, 1400); // added a rate error limit to keep pitching down to a minimum
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500);
int16_t y_iterm = g.pi_loiter_lat.get_i(y_rate_error, dTnav);
nav_lat_p = g.pi_nav_lat.get_p(y_rate_error);
nav_lat_p = constrain(nav_lat_p, -3500, 3500);
nav_lat = nav_lat_p + y_iterm;
/*
Serial.printf("max_sp %d,\t x_sp %d, y_sp %d,\t x_re: %d, y_re: %d, \tnav_lon: %d, nav_lat: %d, Xi:%d, Yi:%d, \t XE %d \n",
max_speed,
x_actual_speed,
y_actual_speed,
x_rate_error,
y_rate_error,
nav_lon,
nav_lat,
x_iterm,
y_iterm,
crosstrack_error);
//*/
// nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll()
@ -246,53 +277,21 @@ static void calc_nav_rate(int max_speed)
nav_lat);*/
}
static void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (cross_track_test() < 4000) { // If we are too far off or too close we don't do track following
if (abs(wrap_180(target_bearing - original_target_bearing)) < 4500) { // If we are too far off or too close we don't do track following
float temp = (target_bearing - original_target_bearing) * RADX100;
crosstrack_error = sin(temp) * (wp_distance * g.crosstrack_gain); // Meters we are off track line
crosstrack_error = constrain(crosstrack_error, -1200, 1200);
nav_bearing = target_bearing + constrain(crosstrack_error, -3000, 3000);
nav_bearing = wrap_360(nav_bearing);
}else{
nav_bearing = target_bearing;
}
}
// used to generate the offset angle for testing crosstrack viability
static int32_t cross_track_test()
{
int32_t temp;
temp = target_bearing - original_target_bearing;
temp = wrap_180(temp);
return abs(temp);
}
// this calculation is different than loiter above because we are in a different Frame of Reference.
// nav_lat is pointed towards the target, where as in Loiter, nav_lat is pointed north!
static void calc_nav_pitch_roll()
{
int32_t angle = wrap_360(dcm.yaw_sensor - target_bearing);
float temp = (9000l - angle) * RADX100;
//t: 1.5465, t1: -10.9451, t2: 1.5359, t3: 1.5465
float _cos_yaw_x = cos(temp);
float _sin_yaw_y = sin(temp);
// rotate the vector
nav_roll = (float)nav_lon * _sin_yaw_y - (float)nav_lat * _cos_yaw_x;
nav_pitch = (float)nav_lon * _cos_yaw_x + (float)nav_lat * _sin_yaw_y;
// flip pitch because forward is negative
nav_pitch = -nav_pitch;
/*Serial.printf("Yaw %d, Tbear:%d, \tangle: %d, \t_cos_yaw_x:%1.4f, _sin_yaw_y:%1.4f, nav_roll:%d, nav_pitch:%d\n",
dcm.yaw_sensor,
target_bearing,
angle,
_cos_yaw_x,
_sin_yaw_y,
nav_roll,
nav_pitch);*/
}
static int32_t get_altitude_error()
{