Tools: remove util.py pymavlink dependency by removing old code

This commit is contained in:
Pierre Kancir 2023-03-13 23:30:03 +01:00 committed by Peter Barker
parent 73ddd63994
commit 31595f2e4d

View File

@ -7,7 +7,6 @@ AP_FLAKE8_CLEAN
import atexit
import math
import os
import random
import re
import shlex
import signal
@ -15,12 +14,10 @@ import subprocess
import sys
import tempfile
import time
from math import acos, atan2, cos, pi, sqrt
import pexpect
from pymavlink.rotmat import Vector3, Matrix3
if sys.version_info[0] >= 3:
ENCODING = 'ascii'
else:
@ -616,7 +613,6 @@ def start_MAVProxy_SITL(atype,
if old is not None:
env['PYTHONPATH'] += os.path.pathsep + old
import pexpect
global close_list
cmd = []
cmd.append(mavproxy_cmd())
@ -641,8 +637,6 @@ def start_MAVProxy_SITL(atype,
def expect_setup_callback(e, callback):
"""Setup a callback that is called once a second while waiting for
patterns."""
import pexpect
def _expect_callback(pattern, timeout=e.timeout):
tstart = time.time()
while time.time() < tstart + timeout:
@ -707,51 +701,6 @@ def check_parent(parent_pid=None):
sys.exit(1)
def EarthRatesToBodyRates(dcm, earth_rates):
"""Convert the angular velocities from earth frame to
body frame. Thanks to James Goppert for the formula
all inputs and outputs are in radians
returns a gyro vector in body frame, in rad/s .
"""
from math import sin, cos
(phi, theta, psi) = dcm.to_euler()
phiDot = earth_rates.x
thetaDot = earth_rates.y
psiDot = earth_rates.z
p = phiDot - psiDot * sin(theta)
q = cos(phi) * thetaDot + sin(phi) * psiDot * cos(theta)
r = cos(phi) * psiDot * cos(theta) - sin(phi) * thetaDot
return Vector3(p, q, r)
def BodyRatesToEarthRates(dcm, gyro):
"""Convert the angular velocities from body frame to
earth frame.
all inputs and outputs are in radians/s
returns a earth rate vector.
"""
from math import sin, cos, tan, fabs
p = gyro.x
q = gyro.y
r = gyro.z
(phi, theta, psi) = dcm.to_euler()
phiDot = p + tan(theta) * (q * sin(phi) + r * cos(phi))
thetaDot = q * cos(phi) - r * sin(phi)
if fabs(cos(theta)) < 1.0e-20:
theta += 1.0e-10
psiDot = (q * sin(phi) + r * cos(phi)) / cos(theta)
return Vector3(phiDot, thetaDot, psiDot)
def gps_newpos(lat, lon, bearing, distance):
"""Extrapolate latitude/longitude given a heading and distance
thanks to http://www.movable-type.co.uk/scripts/latlong.html .
@ -802,132 +751,6 @@ def gps_bearing(lat1, lon1, lat2, lon2):
return bearing
class Wind(object):
"""A wind generation object."""
def __init__(self, windstring, cross_section=0.1):
a = windstring.split(',')
if len(a) != 3:
raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring)
self.speed = float(a[0]) # m/s
self.direction = float(a[1]) # direction the wind is going in
self.turbulance = float(a[2]) # turbulance factor (standard deviation)
# the cross-section of the aircraft to wind. This is multiplied by the
# difference in the wind and the velocity of the aircraft to give the acceleration
self.cross_section = cross_section
# the time constant for the turbulance - the average period of the
# changes over time
self.turbulance_time_constant = 5.0
# wind time record
self.tlast = time.time()
# initial turbulance multiplier
self.turbulance_mul = 1.0
def current(self, deltat=None):
"""Return current wind speed and direction as a tuple
speed is in m/s, direction in degrees."""
if deltat is None:
tnow = time.time()
deltat = tnow - self.tlast
self.tlast = tnow
# update turbulance random walk
w_delta = math.sqrt(deltat) * (1.0 - random.gauss(1.0, self.turbulance))
w_delta -= (self.turbulance_mul - 1.0) * (deltat / self.turbulance_time_constant)
self.turbulance_mul += w_delta
speed = self.speed * math.fabs(self.turbulance_mul)
return speed, self.direction
# Calculate drag.
def drag(self, velocity, deltat=None):
"""Return current wind force in Earth frame. The velocity parameter is
a Vector3 of the current velocity of the aircraft in earth frame, m/s ."""
from math import radians
# (m/s, degrees) : wind vector as a magnitude and angle.
(speed, direction) = self.current(deltat=deltat)
# speed = self.speed
# direction = self.direction
# Get the wind vector.
w = toVec(speed, radians(direction))
obj_speed = velocity.length()
# Compute the angle between the object vector and wind vector by taking
# the dot product and dividing by the magnitudes.
d = w.length() * obj_speed
if d == 0:
alpha = 0
else:
alpha = acos((w * velocity) / d)
# Get the relative wind speed and angle from the object. Note that the
# relative wind speed includes the velocity of the object; i.e., there
# is a headwind equivalent to the object's speed even if there is no
# absolute wind.
(rel_speed, beta) = apparent_wind(speed, obj_speed, alpha)
# Return the vector of the relative wind, relative to the coordinate
# system.
relWindVec = toVec(rel_speed, beta + atan2(velocity.y, velocity.x))
# Combine them to get the acceleration vector.
return Vector3(acc(relWindVec.x, drag_force(self, relWindVec.x)), acc(relWindVec.y, drag_force(self, relWindVec.y)), 0)
def apparent_wind(wind_sp, obj_speed, alpha):
"""http://en.wikipedia.org/wiki/Apparent_wind
Returns apparent wind speed and angle of apparent wind. Alpha is the angle
between the object and the true wind. alpha of 0 rads is a headwind; pi a
tailwind. Speeds should always be positive."""
delta = wind_sp * cos(alpha)
x = wind_sp**2 + obj_speed**2 + 2 * obj_speed * delta
rel_speed = sqrt(x)
if rel_speed == 0:
beta = pi
else:
beta = acos((delta + obj_speed) / rel_speed)
return rel_speed, beta
def drag_force(wind, sp):
"""See http://en.wikipedia.org/wiki/Drag_equation
Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient
(let's assume it's low, .e.g., 0.2), p : density of air (assume about 1
kg/m^3, the density just over 1500m elevation), v : relative speed of wind
(to the body), a : area acted on (this is captured by the cross_section
parameter).
So then we have
F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section."""
return (sp**2.0) * 0.1 * wind.cross_section
def acc(val, mag):
""" Function to make the force vector. relWindVec is the direction the apparent
wind comes *from*. We want to compute the accleration vector in the direction
the wind blows to."""
if val == 0:
return mag
else:
return (val / abs(val)) * (0 - mag)
def toVec(magnitude, angle):
"""Converts a magnitude and angle (radians) to a vector in the xy plane."""
v = Vector3(magnitude, 0, 0)
m = Matrix3()
m.from_euler(0, 0, angle)
return m.transposed() * v
def constrain(value, minv, maxv):
"""Constrain a value to a range."""
if value < minv: