mirror of https://github.com/ArduPilot/ardupilot
AC_AttitudeControl_Heli: support for updates to AC_PID library
includes rename get_leaky_i to update_leaky_i
This commit is contained in:
parent
bbe33e38f3
commit
30746267ec
|
@ -157,13 +157,13 @@ const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = {
|
|||
void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds)
|
||||
{
|
||||
// convert from centidegrees on public interface to radians
|
||||
float yaw_rate_bf_rads = radians(yaw_rate_bf_cds*0.01f);
|
||||
float yaw_rate_bf_rads = radians(yaw_rate_bf_cds * 0.01f);
|
||||
|
||||
// store roll, pitch and passthroughs
|
||||
// NOTE: this abuses yaw_rate_bf_rads
|
||||
_passthrough_roll = roll_passthrough;
|
||||
_passthrough_pitch = pitch_passthrough;
|
||||
_passthrough_yaw = degrees(yaw_rate_bf_rads)*100.0f;
|
||||
_passthrough_yaw = degrees(yaw_rate_bf_rads) * 100.0f;
|
||||
|
||||
// set rate controller to use pass through
|
||||
_flags_heli.flybar_passthrough = true;
|
||||
|
@ -191,19 +191,19 @@ void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_pass
|
|||
|
||||
// convert angle error rotation vector into 321-intrinsic euler angle difference
|
||||
// NOTE: this results an an approximation linearized about the vehicle's attitude
|
||||
if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) {
|
||||
if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll, _ahrs.pitch, _ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) {
|
||||
_attitude_target_euler_angle.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll);
|
||||
_attitude_target_euler_angle.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch);
|
||||
_attitude_target_euler_angle.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw);
|
||||
}
|
||||
|
||||
// handle flipping over pitch axis
|
||||
if (_attitude_target_euler_angle.y > M_PI/2.0f) {
|
||||
if (_attitude_target_euler_angle.y > M_PI / 2.0f) {
|
||||
_attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI);
|
||||
_attitude_target_euler_angle.y = wrap_PI(M_PI - _attitude_target_euler_angle.x);
|
||||
_attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI);
|
||||
}
|
||||
if (_attitude_target_euler_angle.y < -M_PI/2.0f) {
|
||||
if (_attitude_target_euler_angle.y < -M_PI / 2.0f) {
|
||||
_attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI);
|
||||
_attitude_target_euler_angle.y = wrap_PI(-M_PI - _attitude_target_euler_angle.x);
|
||||
_attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI);
|
||||
|
@ -253,13 +253,13 @@ void AC_AttitudeControl_Heli::rate_controller_run()
|
|||
// call rate controllers and send output to motors object
|
||||
// if using a flybar passthrough roll and pitch directly to motors
|
||||
if (_flags_heli.flybar_passthrough) {
|
||||
_motors.set_roll(_passthrough_roll/4500.0f);
|
||||
_motors.set_pitch(_passthrough_pitch/4500.0f);
|
||||
_motors.set_roll(_passthrough_roll / 4500.0f);
|
||||
_motors.set_pitch(_passthrough_pitch / 4500.0f);
|
||||
} else {
|
||||
rate_bf_to_motor_roll_pitch(gyro_latest, _rate_target_ang_vel.x, _rate_target_ang_vel.y);
|
||||
}
|
||||
if (_flags_heli.tail_passthrough) {
|
||||
_motors.set_yaw(_passthrough_yaw/4500.0f);
|
||||
_motors.set_yaw(_passthrough_yaw / 4500.0f);
|
||||
} else {
|
||||
_motors.set_yaw(rate_target_to_motor_yaw(gyro_latest.z, _rate_target_ang_vel.z));
|
||||
}
|
||||
|
@ -268,8 +268,8 @@ void AC_AttitudeControl_Heli::rate_controller_run()
|
|||
// Update Alt_Hold angle maximum
|
||||
void AC_AttitudeControl_Heli::update_althold_lean_angle_max(float throttle_in)
|
||||
{
|
||||
float althold_lean_angle_max = acosf(constrain_float(_throttle_in/AC_ATTITUDE_HELI_ANGLE_LIMIT_THROTTLE_MAX, 0.0f, 1.0f));
|
||||
_althold_lean_angle_max = _althold_lean_angle_max + (_dt/(_dt+_angle_limit_tc))*(althold_lean_angle_max-_althold_lean_angle_max);
|
||||
float althold_lean_angle_max = acosf(constrain_float(_throttle_in / AC_ATTITUDE_HELI_ANGLE_LIMIT_THROTTLE_MAX, 0.0f, 1.0f));
|
||||
_althold_lean_angle_max = _althold_lean_angle_max + (_dt / (_dt + _angle_limit_tc)) * (althold_lean_angle_max - _althold_lean_angle_max);
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -283,68 +283,37 @@ void AC_AttitudeControl_Heli::update_althold_lean_angle_max(float throttle_in)
|
|||
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
|
||||
void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_rads, float rate_roll_target_rads, float rate_pitch_target_rads)
|
||||
{
|
||||
float roll_pd, roll_i, roll_ff; // used to capture pid values
|
||||
float pitch_pd, pitch_i, pitch_ff; // used to capture pid values
|
||||
float rate_roll_error_rads, rate_pitch_error_rads; // simply target_rate - current_rate
|
||||
float roll_out, pitch_out;
|
||||
|
||||
// calculate error
|
||||
rate_roll_error_rads = rate_roll_target_rads - rate_rads.x;
|
||||
rate_pitch_error_rads = rate_pitch_target_rads - rate_rads.y;
|
||||
if (_flags_heli.leaky_i) {
|
||||
_pid_rate_roll.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
||||
}
|
||||
float roll_pid = _pid_rate_roll.update_all(rate_roll_target_rads, rate_rads.x, _flags_heli.limit_roll);
|
||||
|
||||
// pass error to PID controller
|
||||
_pid_rate_roll.set_input_filter_all(rate_roll_error_rads);
|
||||
_pid_rate_roll.set_desired_rate(rate_roll_target_rads);
|
||||
_pid_rate_pitch.set_input_filter_all(rate_pitch_error_rads);
|
||||
_pid_rate_pitch.set_desired_rate(rate_pitch_target_rads);
|
||||
|
||||
// call p and d controllers
|
||||
roll_pd = _pid_rate_roll.get_p() + _pid_rate_roll.get_d();
|
||||
pitch_pd = _pid_rate_pitch.get_p() + _pid_rate_pitch.get_d();
|
||||
|
||||
// get roll i term
|
||||
roll_i = _pid_rate_roll.get_integrator();
|
||||
|
||||
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
||||
if (!_flags_heli.limit_roll || ((roll_i>0&&rate_roll_error_rads<0)||(roll_i<0&&rate_roll_error_rads>0))){
|
||||
if (_flags_heli.leaky_i){
|
||||
roll_i = _pid_rate_roll.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
||||
}else{
|
||||
roll_i = _pid_rate_roll.get_i();
|
||||
}
|
||||
if (_flags_heli.leaky_i) {
|
||||
_pid_rate_pitch.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
||||
}
|
||||
|
||||
// get pitch i term
|
||||
pitch_i = _pid_rate_pitch.get_integrator();
|
||||
float pitch_pid = _pid_rate_pitch.update_all(rate_pitch_target_rads, rate_rads.y, _flags_heli.limit_pitch);
|
||||
|
||||
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
||||
if (!_flags_heli.limit_pitch || ((pitch_i>0&&rate_pitch_error_rads<0)||(pitch_i<0&&rate_pitch_error_rads>0))){
|
||||
if (_flags_heli.leaky_i) {
|
||||
pitch_i = _pid_rate_pitch.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
||||
}else{
|
||||
pitch_i = _pid_rate_pitch.get_i();
|
||||
}
|
||||
}
|
||||
|
||||
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward
|
||||
roll_ff = roll_feedforward_filter.apply(_pid_rate_roll.get_ff(rate_roll_target_rads), _dt);
|
||||
pitch_ff = pitch_feedforward_filter.apply(_pid_rate_pitch.get_ff(rate_pitch_target_rads), _dt);
|
||||
// use pid library to calculate ff
|
||||
float roll_ff = _pid_rate_roll.get_ff();
|
||||
float pitch_ff = _pid_rate_pitch.get_ff();
|
||||
|
||||
// add feed forward and final output
|
||||
roll_out = roll_pd + roll_i + roll_ff;
|
||||
pitch_out = pitch_pd + pitch_i + pitch_ff;
|
||||
float roll_out = roll_pid + roll_ff;
|
||||
float pitch_out = pitch_pid + pitch_ff;
|
||||
|
||||
// constrain output and update limit flags
|
||||
if (fabsf(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) {
|
||||
roll_out = constrain_float(roll_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
||||
roll_out = constrain_float(roll_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
||||
_flags_heli.limit_roll = true;
|
||||
}else{
|
||||
} else {
|
||||
_flags_heli.limit_roll = false;
|
||||
}
|
||||
if (fabsf(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) {
|
||||
pitch_out = constrain_float(pitch_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
||||
pitch_out = constrain_float(pitch_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
||||
_flags_heli.limit_pitch = true;
|
||||
}else{
|
||||
} else {
|
||||
_flags_heli.limit_pitch = false;
|
||||
}
|
||||
|
||||
|
@ -356,22 +325,19 @@ void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_r
|
|||
// helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability
|
||||
// as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs.
|
||||
// It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption.
|
||||
if (_piro_comp_enabled){
|
||||
if (_piro_comp_enabled) {
|
||||
|
||||
// used to hold current I-terms while doing piro comp:
|
||||
const float piro_roll_i = roll_i;
|
||||
const float piro_pitch_i = pitch_i;
|
||||
const float piro_roll_i = _pid_rate_roll.get_i();
|
||||
const float piro_pitch_i = _pid_rate_pitch.get_i();
|
||||
|
||||
Vector2f yawratevector;
|
||||
yawratevector.x = cosf(-rate_rads.z * _dt);
|
||||
yawratevector.y = sinf(-rate_rads.z * _dt);
|
||||
yawratevector.normalize();
|
||||
|
||||
roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y;
|
||||
pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y;
|
||||
|
||||
_pid_rate_pitch.set_integrator(pitch_i);
|
||||
_pid_rate_roll.set_integrator(roll_i);
|
||||
_pid_rate_roll.set_integrator(piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y);
|
||||
_pid_rate_pitch.set_integrator(piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -379,43 +345,23 @@ void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_r
|
|||
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
|
||||
float AC_AttitudeControl_Heli::rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_target_rads)
|
||||
{
|
||||
float pd,i,vff; // used to capture pid values for logging
|
||||
float rate_error_rads; // simply target_rate - current_rate
|
||||
float yaw_out;
|
||||
|
||||
// calculate error and call pid controller
|
||||
rate_error_rads = rate_target_rads - rate_yaw_actual_rads;
|
||||
|
||||
// pass error to PID controller
|
||||
_pid_rate_yaw.set_input_filter_all(rate_error_rads);
|
||||
_pid_rate_yaw.set_desired_rate(rate_target_rads);
|
||||
|
||||
// get p and d
|
||||
pd = _pid_rate_yaw.get_p() + _pid_rate_yaw.get_d();
|
||||
|
||||
// get i term
|
||||
i = _pid_rate_yaw.get_integrator();
|
||||
|
||||
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
||||
if (!_flags_heli.limit_yaw || ((i>0&&rate_error_rads<0)||(i<0&&rate_error_rads>0))) {
|
||||
if (((AP_MotorsHeli&)_motors).rotor_runup_complete()) {
|
||||
i = _pid_rate_yaw.get_i();
|
||||
} else {
|
||||
i = ((AC_HELI_PID&)_pid_rate_yaw).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up
|
||||
}
|
||||
if (!((AP_MotorsHeli&)_motors).rotor_runup_complete()) {
|
||||
_pid_rate_yaw.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
||||
}
|
||||
|
||||
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward
|
||||
vff = yaw_velocity_feedforward_filter.apply(_pid_rate_yaw.get_ff(rate_target_rads), _dt);
|
||||
|
||||
|
||||
float pid = _pid_rate_yaw.update_all(rate_target_rads, rate_yaw_actual_rads, _flags_heli.limit_yaw);
|
||||
|
||||
// use pid library to calculate ff
|
||||
float vff = _pid_rate_yaw.get_ff();
|
||||
|
||||
// add feed forward
|
||||
yaw_out = pd + i + vff;
|
||||
float yaw_out = pid + vff;
|
||||
|
||||
// constrain output and update limit flag
|
||||
if (fabsf(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) {
|
||||
yaw_out = constrain_float(yaw_out,-AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
|
||||
yaw_out = constrain_float(yaw_out, -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
|
||||
_flags_heli.limit_yaw = true;
|
||||
}else{
|
||||
} else {
|
||||
_flags_heli.limit_yaw = false;
|
||||
}
|
||||
|
||||
|
|
|
@ -36,12 +36,9 @@ public:
|
|||
AP_MotorsHeli& motors,
|
||||
float dt) :
|
||||
AC_AttitudeControl(ahrs, aparm, motors, dt),
|
||||
_pid_rate_roll(AC_ATC_HELI_RATE_RP_P, AC_ATC_HELI_RATE_RP_I, AC_ATC_HELI_RATE_RP_D, AC_ATC_HELI_RATE_RP_IMAX, AC_ATC_HELI_RATE_RP_FILT_HZ, dt, AC_ATC_HELI_RATE_RP_FF),
|
||||
_pid_rate_pitch(AC_ATC_HELI_RATE_RP_P, AC_ATC_HELI_RATE_RP_I, AC_ATC_HELI_RATE_RP_D, AC_ATC_HELI_RATE_RP_IMAX, AC_ATC_HELI_RATE_RP_FILT_HZ, dt, AC_ATC_HELI_RATE_RP_FF),
|
||||
_pid_rate_yaw(AC_ATC_HELI_RATE_YAW_P, AC_ATC_HELI_RATE_YAW_I, AC_ATC_HELI_RATE_YAW_D, AC_ATC_HELI_RATE_YAW_IMAX, AC_ATC_HELI_RATE_YAW_FILT_HZ, dt, AC_ATC_HELI_RATE_YAW_FF),
|
||||
pitch_feedforward_filter(AC_ATTITUDE_HELI_RATE_RP_FF_FILTER),
|
||||
roll_feedforward_filter(AC_ATTITUDE_HELI_RATE_RP_FF_FILTER),
|
||||
yaw_velocity_feedforward_filter(AC_ATTITUDE_HELI_RATE_Y_VFF_FILTER)
|
||||
_pid_rate_roll(AC_ATC_HELI_RATE_RP_P, AC_ATC_HELI_RATE_RP_I, AC_ATC_HELI_RATE_RP_D, AC_ATC_HELI_RATE_RP_FF, AC_ATC_HELI_RATE_RP_IMAX, AC_ATTITUDE_HELI_RATE_RP_FF_FILTER, AC_ATC_HELI_RATE_RP_FILT_HZ, 0.0f, dt),
|
||||
_pid_rate_pitch(AC_ATC_HELI_RATE_RP_P, AC_ATC_HELI_RATE_RP_I, AC_ATC_HELI_RATE_RP_D, AC_ATC_HELI_RATE_RP_FF, AC_ATC_HELI_RATE_RP_IMAX, AC_ATTITUDE_HELI_RATE_RP_FF_FILTER, AC_ATC_HELI_RATE_RP_FILT_HZ, 0.0f, dt),
|
||||
_pid_rate_yaw(AC_ATC_HELI_RATE_YAW_P, AC_ATC_HELI_RATE_YAW_I, AC_ATC_HELI_RATE_YAW_D, AC_ATC_HELI_RATE_YAW_FF, AC_ATC_HELI_RATE_YAW_IMAX, AC_ATTITUDE_HELI_RATE_Y_VFF_FILTER, AC_ATC_HELI_RATE_YAW_FILT_HZ, 0.0f, dt)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
|
||||
|
@ -128,7 +125,7 @@ private:
|
|||
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target body-frame rate (in radians/sec) for roll, pitch and yaw
|
||||
// outputs are sent directly to motor class
|
||||
void rate_bf_to_motor_roll_pitch(const Vector3f &rate_rads, float rate_roll_target_rads, float rate_pitch_target_rads);
|
||||
float rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_yaw_rads) override;
|
||||
float rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_yaw_rads);
|
||||
|
||||
//
|
||||
// throttle methods
|
||||
|
@ -160,12 +157,4 @@ private:
|
|||
AC_HELI_PID _pid_rate_pitch;
|
||||
AC_HELI_PID _pid_rate_yaw;
|
||||
|
||||
// LPF filters to act on Rate Feedforward terms to linearize output.
|
||||
// Due to complicated aerodynamic effects, feedforwards acting too fast can lead
|
||||
// to jerks on rate change requests.
|
||||
LowPassFilterFloat pitch_feedforward_filter;
|
||||
LowPassFilterFloat roll_feedforward_filter;
|
||||
LowPassFilterFloat yaw_velocity_feedforward_filter;
|
||||
LowPassFilterFloat yaw_acceleration_feedforward_filter;
|
||||
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue