AP_NavEKF2: Rework measurement buffer refactor

These changes were pair coded an tested by Siddharth Purohit and Paul Riseborough

Fix indexing errors
Move buffer code into a separate file
Split observer and IMU/output buffers and remove duplicate sample time
Optimise observation buffer search
Reduce maximum allowed fusion age to 100 msec
This commit is contained in:
Siddharth Purohit and Paul Riseborough 2015-11-21 09:05:12 +11:00 committed by Andrew Tridgell
parent b3c8dcee34
commit 3014eb4001
4 changed files with 220 additions and 133 deletions

View File

@ -0,0 +1,190 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// EKF Buffer models
// this buffer model is to be used for observation buffers,
// the data is pushed into buffer like any standard ring buffer
// return is based on the sample time provided
template <typename element_type>
class obs_ring_buffer_t
{
public:
struct element_t{
element_type element;
} *buffer;
// initialise buffer, returns false when allocation has failed
bool init(uint32_t size)
{
buffer = new element_t[size];
if(buffer == NULL)
{
return false;
}
memset(buffer,0,size*sizeof(element_t));
_size = size;
_head = 0;
_tail = 0;
_new_data = false;
return true;
}
/*
* Searches through a ring buffer and return the newest data that is older than the
* time specified by sample_time_ms
* Zeros old data so it cannot not be used again
* Returns false if no data can be found that is less than 100msec old
*/
bool recall(element_type &element,uint32_t sample_time)
{
if(!_new_data) {
return false;
}
bool success = false;
uint8_t tail = _tail, bestIndex;
if(_head == tail) {
if (buffer[tail].element.time_ms != 0 && buffer[tail].element.time_ms <= sample_time) {
// if head is equal to tail just check if the data is unused and within time horizon window
if (((sample_time - buffer[tail].element.time_ms) < 100)) {
bestIndex = tail;
success = true;
_new_data = false;
}
}
} else {
while(_head != tail) {
// find a measurement older than the fusion time horizon that we haven't checked before
if (buffer[tail].element.time_ms != 0 && buffer[tail].element.time_ms <= sample_time) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((sample_time - buffer[tail].element.time_ms) < 100)) {
bestIndex = tail;
success = true;
}
} else if(buffer[tail].element.time_ms > sample_time){
break;
}
tail = (tail+1)%_size;
}
}
if (success) {
element = buffer[bestIndex].element;
_tail = (bestIndex+1)%_size;
//make time zero to stop using it again,
//resolves corner case of reusing the element when head == tail
buffer[bestIndex].element.time_ms = 0;
return true;
} else {
return false;
}
}
/*
* Writes data and timestamp to a Ring buffer and advances indices that
* define the location of the newest and oldest data
*/
inline void push(element_type element)
{
// Advance head to next available index
_head = (_head+1)%_size;
// New data is written at the head
buffer[_head].element = element;
_new_data = true;
}
// writes the same data to all elements in the ring buffer
inline void reset_history(element_type element, uint32_t sample_time) {
for (uint8_t index=0; index<_size; index++) {
buffer[index].element = element;
}
}
// zeroes all data in the ring buffer
inline void reset() {
_head = 0;
_tail = 0;
_new_data = false;
memset(buffer,0,_size*sizeof(element_t));
}
private:
uint8_t _size,_head,_tail,_new_data;
};
// Folowing buffer model is for IMU data,
// it achieves a distance of sample size
// between youngest and oldest
template <typename element_type>
class imu_ring_buffer_t
{
public:
struct element_t{
element_type element;
} *buffer;
// initialise buffer, returns false when allocation has failed
bool init(uint32_t size)
{
buffer = new element_t[size];
if(buffer == NULL)
{
return false;
}
memset(buffer,0,size*sizeof(element_t));
_size = size;
_youngest = 0;
_oldest = 0;
return true;
}
/*
* Writes data to a Ring buffer and advances indices that
* define the location of the newest and oldest data
*/
inline void push_youngest_element(element_type element)
{
// push youngest to the buffer
_youngest = (_youngest+1)%_size;
buffer[_youngest].element = element;
// set oldest data index
_oldest = (_youngest+1)%_size;
}
// retrieve the oldest data from the ring buffer tail
inline element_type pop_oldest_element() {
element_type ret = buffer[_oldest].element;
return ret;
}
// writes the same data to all elements in the ring buffer
inline void reset_history(element_type element) {
for (uint8_t index=0; index<_size; index++) {
buffer[index].element = element;
}
}
// zeroes all data in the ring buffer
inline void reset() {
_youngest = 0;
_oldest = 0;
memset(buffer,0,_size*sizeof(element_t));
}
// retrieves data from the ring buffer at a specified index
inline element_type& operator[](uint32_t index) {
return buffer[index].element;
}
// returns the index for the ring buffer oldest data
inline uint8_t get_oldest_index(){
return _oldest;
}
// returns the index for the ring buffer youngest data
inline uint8_t get_youngest_index(){
return _youngest;
}
private:
uint8_t _size,_oldest,_youngest;
};

View File

@ -71,14 +71,14 @@ void NavEKF2_core::readRangeFinder(void)
rangeDataNew.rng = max(storedRngMeas[midIndex],rngOnGnd); rangeDataNew.rng = max(storedRngMeas[midIndex],rngOnGnd);
rngValidMeaTime_ms = imuSampleTime_ms; rngValidMeaTime_ms = imuSampleTime_ms;
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it // write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew,imuSampleTime_ms); storedRange.push(rangeDataNew);
} else if (!takeOffDetected) { } else if (!takeOffDetected) {
// before takeoff we assume on-ground range value if there is no data // before takeoff we assume on-ground range value if there is no data
rangeDataNew.time_ms = imuSampleTime_ms; rangeDataNew.time_ms = imuSampleTime_ms;
rangeDataNew.rng = rngOnGnd; rangeDataNew.rng = rngOnGnd;
rngValidMeaTime_ms = imuSampleTime_ms; rngValidMeaTime_ms = imuSampleTime_ms;
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it // write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew,imuSampleTime_ms); storedRange.push(rangeDataNew);
} }
} }
} }
@ -131,7 +131,7 @@ void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRa
// Prevent time delay exceeding age of oldest IMU data in the buffer // Prevent time delay exceeding age of oldest IMU data in the buffer
ofDataNew.time_ms = max(ofDataNew.time_ms,imuDataDelayed.time_ms); ofDataNew.time_ms = max(ofDataNew.time_ms,imuDataDelayed.time_ms);
// Save data to buffer // Save data to buffer
storedOF.push(ofDataNew, ofDataNew.time_ms); storedOF.push(ofDataNew);
// Check for data at the fusion time horizon // Check for data at the fusion time horizon
flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms); flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms);
} }
@ -213,7 +213,7 @@ void NavEKF2_core::readMagData()
consistentMagData = _ahrs->get_compass()->consistent(); consistentMagData = _ahrs->get_compass()->consistent();
// save magnetometer measurement to buffer to be fused later // save magnetometer measurement to buffer to be fused later
storedMag.push(magDataNew, magDataNew.time_ms); storedMag.push(magDataNew);
} }
} }
@ -296,7 +296,7 @@ void NavEKF2_core::readIMUData()
// Time stamp the data // Time stamp the data
imuDataDownSampledNew.time_ms = imuSampleTime_ms; imuDataDownSampledNew.time_ms = imuSampleTime_ms;
// Write data to the FIFO IMU buffer // Write data to the FIFO IMU buffer
storedIMU.push(imuDataDownSampledNew, imuSampleTime_ms); storedIMU.push_youngest_element(imuDataDownSampledNew);
// zero the accumulated IMU data and quaternion // zero the accumulated IMU data and quaternion
imuDataDownSampledNew.delAng.zero(); imuDataDownSampledNew.delAng.zero();
imuDataDownSampledNew.delVel.zero(); imuDataDownSampledNew.delVel.zero();
@ -314,7 +314,7 @@ void NavEKF2_core::readIMUData()
} }
// extract the oldest available data from the FIFO buffer // extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU.pop(); imuDataDelayed = storedIMU.pop_oldest_element();
float minDT = 0.1f*dtEkfAvg; float minDT = 0.1f*dtEkfAvg;
imuDataDelayed.delAngDT = max(imuDataDelayed.delAngDT,minDT); imuDataDelayed.delAngDT = max(imuDataDelayed.delAngDT,minDT);
imuDataDelayed.delVelDT = max(imuDataDelayed.delVelDT,minDT); imuDataDelayed.delVelDT = max(imuDataDelayed.delVelDT,minDT);
@ -419,7 +419,7 @@ void NavEKF2_core::readGpsData()
if (validOrigin) { if (validOrigin) {
gpsDataNew.pos = location_diff(EKF_origin, gpsloc); gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt); gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt);
storedGPS.push(gpsDataNew, gpsDataNew.time_ms); storedGPS.push(gpsDataNew);
// declare GPS available for use // declare GPS available for use
gpsNotAvailable = false; gpsNotAvailable = false;
} }
@ -532,7 +532,7 @@ void NavEKF2_core::readBaroData()
baroDataNew.time_ms = max(baroDataNew.time_ms,imuDataDelayed.time_ms); baroDataNew.time_ms = max(baroDataNew.time_ms,imuDataDelayed.time_ms);
// save baro measurement to buffer to be fused later // save baro measurement to buffer to be fused later
storedBaro.push(baroDataNew,baroDataNew.time_ms); storedBaro.push(baroDataNew);
} }
} }
@ -564,7 +564,7 @@ void NavEKF2_core::readAirSpdData()
// Correct for the average intersampling delay due to the filter update rate // Correct for the average intersampling delay due to the filter update rate
tasDataNew.time_ms -= localFilterTimeStep_ms/2; tasDataNew.time_ms -= localFilterTimeStep_ms/2;
newDataTas = true; newDataTas = true;
storedTAS.push(tasDataNew, tasDataNew.time_ms); storedTAS.push(tasDataNew);
storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms); storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms);
} else { } else {
newDataTas = false; newDataTas = false;

View File

@ -254,6 +254,15 @@ void NavEKF2_core::InitialiseVariables()
imuDataDownSampledNew.delVelDT = 0.0f; imuDataDownSampledNew.delVelDT = 0.0f;
runUpdates = false; runUpdates = false;
framesSincePredict = 0; framesSincePredict = 0;
// zero data buffers
storedIMU.reset();
storedGPS.reset();
storedMag.reset();
storedBaro.reset();
storedTAS.reset();
storedRange.reset();
storedOutput.reset();
} }
// Initialise the states from accelerometer and magnetometer data (if present) // Initialise the states from accelerometer and magnetometer data (if present)
@ -273,7 +282,7 @@ bool NavEKF2_core::InitialiseFilterBootstrap(void)
dtIMUavg = 1.0f/_ahrs->get_ins().get_sample_rate(); dtIMUavg = 1.0f/_ahrs->get_ins().get_sample_rate();
dtEkfAvg = min(0.01f,dtIMUavg); dtEkfAvg = min(0.01f,dtIMUavg);
readIMUData(); readIMUData();
storedIMU.reset_history(imuDataNew, imuSampleTime_ms); storedIMU.reset_history(imuDataNew);
imuDataDelayed = imuDataNew; imuDataDelayed = imuDataNew;
// acceleration vector in XYZ body axes measured by the IMU (m/s^2) // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
@ -580,11 +589,11 @@ void NavEKF2_core::calcOutputStatesFast() {
// store the output in the FIFO buffer if this is a filter update step // store the output in the FIFO buffer if this is a filter update step
if (runUpdates) { if (runUpdates) {
storedOutput[storedIMU.get_head()] = outputDataNew; storedOutput[storedIMU.get_youngest_index()] = outputDataNew;
} }
// extract data at the fusion time horizon from the FIFO buffer // extract data at the fusion time horizon from the FIFO buffer
outputDataDelayed = storedOutput[storedIMU.get_tail()]; outputDataDelayed = storedOutput[storedIMU.get_oldest_index()];
// compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction // compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction

View File

@ -31,6 +31,7 @@
#include "AP_NavEKF2.h" #include "AP_NavEKF2.h"
#include <stdio.h> #include <stdio.h>
#include <AP_Math/vectorN.h> #include <AP_Math/vectorN.h>
#include <AP_NavEKF2/AP_NavEKF2_Buffer.h>
// GPS pre-flight check bit locations // GPS pre-flight check bit locations
#define MASK_GPS_NSATS (1<<0) #define MASK_GPS_NSATS (1<<0)
@ -42,119 +43,6 @@
#define MASK_GPS_VERT_SPD (1<<6) #define MASK_GPS_VERT_SPD (1<<6)
#define MASK_GPS_HORIZ_SPD (1<<7) #define MASK_GPS_HORIZ_SPD (1<<7)
template <typename element_type>
class timed_ring_buffer_t
{
public:
struct element_t{
element_type element;
uint32_t sample_time;
} *buffer;
bool init(uint32_t size)
{
buffer = new element_t[size];
memset(buffer,0,_size*sizeof(element_t));
if(buffer == NULL)
{
return false;
}
_size = size;
_head = 0;
_tail = 0;
return true;
}
void sorted_store(element_type element, uint32_t sample_time)
{
uint8_t head = _head;
//will drop the element if older than tail i.e. recently fetched data
while(head != _tail) {
if(buffer[(head - 1)%_size].sample_time < sample_time) {
buffer[head].element = element;
} else {
buffer[head] = buffer[(head - 1)%_size];
head = (head-1)%_size;
}
}
_head = (_head+1)%_size;
return;
}
bool recall(element_type &element,uint32_t sample_time)
{
bool success = false;
uint8_t tail = _tail, bestIndex;
while (_head != tail) {
// find a measurement older than the fusion time horizon that we haven't checked before
if (buffer[tail].sample_time != 0 && buffer[tail].sample_time <= sample_time) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((sample_time - buffer[tail].sample_time) < 500)) {
bestIndex = tail;
success = true;
}
} else if(buffer[tail].sample_time > sample_time){
break;
}
tail = (tail+1)%_size;
}
if (success) {
// zero the time stamp for that piece of data so we won't use it again
element = buffer[bestIndex].element;
element.time_ms = buffer[bestIndex].sample_time;
_tail=(bestIndex+1)%_size;
return true;
} else {
return false;
}
}
inline void push(element_type element, uint32_t sample_time)
{
buffer[_head].element = element;
buffer[_head].sample_time = sample_time;
_head = (_head+1)%_size;
}
inline void push(element_type element)
{
buffer[_head].element = element;
_head = (_head+1)%_size;
}
inline element_type pop() {
element_type ret = buffer[_tail].element;
if(_head != _tail) {
_tail = (_tail+1)%_size;
}
return ret;
}
inline void reset_history(element_type element, uint32_t sample_time) {
_head = (_tail+1)%_size;
buffer[_tail].sample_time = sample_time;
buffer[_tail].element = element;
}
inline void reset() {
_head=_tail=0;
memset(buffer,0,_size*sizeof(element_t));
}
inline element_type& operator[](uint32_t index) {
return buffer[index].element;
}
inline uint8_t get_tail(){
return _tail;
}
inline uint8_t get_head(){
return _head;
}
private:
uint8_t _size,_head,_tail;
};
class AP_AHRS; class AP_AHRS;
class NavEKF2_core class NavEKF2_core
@ -750,13 +638,13 @@ private:
Matrix24 KH; // intermediate result used for covariance updates Matrix24 KH; // intermediate result used for covariance updates
Matrix24 KHP; // intermediate result used for covariance updates Matrix24 KHP; // intermediate result used for covariance updates
Matrix24 P; // covariance matrix Matrix24 P; // covariance matrix
timed_ring_buffer_t<imu_elements> storedIMU; // IMU data buffer imu_ring_buffer_t<imu_elements> storedIMU; // IMU data buffer
timed_ring_buffer_t<gps_elements> storedGPS; // GPS data buffer obs_ring_buffer_t<gps_elements> storedGPS; // GPS data buffer
timed_ring_buffer_t<mag_elements> storedMag; // Magnetometer data buffer obs_ring_buffer_t<mag_elements> storedMag; // Magnetometer data buffer
timed_ring_buffer_t<baro_elements> storedBaro; // Baro data buffer obs_ring_buffer_t<baro_elements> storedBaro; // Baro data buffer
timed_ring_buffer_t<tas_elements> storedTAS; // TAS data buffer obs_ring_buffer_t<tas_elements> storedTAS; // TAS data buffer
timed_ring_buffer_t<range_elements> storedRange; obs_ring_buffer_t<range_elements> storedRange;
timed_ring_buffer_t<output_elements> storedOutput;// output state buffer imu_ring_buffer_t<output_elements> storedOutput;// output state buffer
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad) Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Quaternion correctedDelAngQuat; // quaternion representation of correctedDelAng Quaternion correctedDelAngQuat; // quaternion representation of correctedDelAng
Vector3f correctedDelVel; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s) Vector3f correctedDelVel; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s)
@ -918,7 +806,7 @@ private:
float lastInnovation; float lastInnovation;
// variables added for optical flow fusion // variables added for optical flow fusion
timed_ring_buffer_t<of_elements> storedOF; // OF data buffer obs_ring_buffer_t<of_elements> storedOF; // OF data buffer
of_elements ofDataNew; // OF data at the current time horizon of_elements ofDataNew; // OF data at the current time horizon
of_elements ofDataDelayed; // OF data at the fusion time horizon of_elements ofDataDelayed; // OF data at the fusion time horizon
uint8_t ofStoreIndex; // OF data storage index uint8_t ofStoreIndex; // OF data storage index