AP_Scripting: fixed chaining of orientations

use tangent rotation to accumulate orientations
This commit is contained in:
Andrew Tridgell 2022-11-05 15:11:44 +11:00
parent a94f75fe29
commit 2fb90fb5dd

View File

@ -16,7 +16,7 @@ function bind_add_param(name, idx, default_value)
return Parameter(PARAM_TABLE_PREFIX .. name)
end
AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 3000)
AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 6000)
HGT_I = bind_add_param('HGT_I', 2, 2)
AEROM_KE_ANG = bind_add_param('KE_ANG', 3, 15)
THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80)
@ -286,6 +286,27 @@ function makeVector3f(x, y, z)
return vec
end
--[[
get quaternion rotation between vector1 and vector2
with thanks to https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another
--]]
function vectors_to_quat_rotation(vector1, vector2)
local v1 = vector1:copy()
local v2 = vector2:copy()
v1:normalize()
v2:normalize()
local dot = v1:dot(v2)
local a = v1:cross(v2)
local w = 1.0 + dot
local q = Quaternion()
q:q1(w)
q:q2(a:x())
q:q3(a:y())
q:q4(a:z())
q:normalize()
return q
end
--[[
@ -1678,8 +1699,6 @@ function quat_projection_ground_plane(q)
end
path_var.count = 0
path_var.initial_ori = Quaternion()
path_var.initial_maneuver_to_earth = Quaternion()
function do_path()
local now = millis():tofloat() * 0.001
@ -1704,18 +1723,16 @@ function do_path()
path_var.last_pos = path.get_pos(0) --position at t0
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
path_var.initial_ori = Quaternion()
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
path_var.initial_ori:normalize()
path_var.initial_maneuver_to_earth = Quaternion()
path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg))
path_var.initial_maneuver_to_earth:normalize()
path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin()
local corrected_position_t0_ef, angle_t0, s0 = rotate_path(path, target_dt/path_var.total_time,
path_var.initial_ori, path_var.initial_ef_pos)
local corrected_position_t1_ef, angle_t1, s0 = rotate_path(path, 2*target_dt/path_var.total_time,
path_var.initial_ori, path_var.initial_ef_pos)
path_var.start_pos = ahrs:get_position()
path_var.path_int = path_var.start_pos:copy()
@ -1728,52 +1745,53 @@ function do_path()
path_var.filtered_angular_velocity = Vector3f()
path_var.start_time = now + target_dt
path_var.last_time = now
path_var.average_dt = target_dt
path_var.scaled_dt = target_dt
path_var.last_time = now - 1.0/LOOP_RATE
path_var.sideslip_angle_rad = 0.0
path_var.last_ang_rate_dps = Vector3f()
path_var.last_ang_rate_dps = ahrs:get_gyro():scale(math.deg(1))
path_var.path_t = 0
path_var.path_t = 0.0
path_var.tangent = makeVector3f(1,0,0)
path_var.initial_maneuver_to_earth:earth_to_body(path_var.tangent)
path_var.pos = path_var.initial_ef_pos:copy()
path_var.roll = 0.0
path_var.speed = nil
return true
end
local vel_length = ahrs:get_velocity_NED():length()
local actual_dt = now - path_var.last_time
path_var.last_time = now
local local_n_dt = actual_dt/path_var.total_time
-- airspeed, assume we don't go below min
local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs:airspeed_estimate())
path_var.last_time = now
if path_var.path_t + 2*local_n_dt > 1.0 then
if path_var.path_t + local_n_dt > 1.0 then
-- all done
return false
end
-- airspeed, assume we don't go below min
local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs:airspeed_estimate())
--[[
calculate positions and angles at previous, current and next time steps
--]]
next_target_pos_ef = next_target_pos_ef
local p0, r0, s0 = rotate_path(path, path_var.path_t,
path_var.initial_ori, path_var.initial_ef_pos)
local p1, r1, s1 = rotate_path(path, path_var.path_t + 1*local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local p2, r2, s2 = rotate_path(path, path_var.path_t + 2*local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local p0 = path_var.pos:copy()
local r0 = path_var.roll
local s0 = path_var.speed
local p1, r1, s1 = rotate_path(path, path_var.path_t + local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local current_measured_pos_ef = ahrs:get_relative_position_NED_origin()
--[[
get tangents to the path
--]]
local tangent1_ef = p1 - p0
local tangent2_ef = p2 - p1
local tangent1_ef = path_var.tangent:copy()
local tangent2_ef = p1 - p0
local tv_unit = tangent2_ef:copy()
if tv_unit:length() < 0.00001 then
@ -1788,7 +1806,12 @@ function do_path()
local v = ahrs:get_velocity_NED()
local path_dist = v:dot(tv_unit)*actual_dt
if path_dist < 0 then
gcs:send_text(0, string.format("aborting %.2f", path_dist))
gcs:send_text(0, string.format("aborting %.2f at %d tv=(%.2f,%.2f,%.2f) vx=%.2f adt=%.2f",
path_dist, path_var.count,
tangent2_ef:x(),
tangent2_ef:y(),
tangent2_ef:z(),
v:x(), actual_dt))
return false
end
local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt)
@ -1799,18 +1822,19 @@ function do_path()
p1, r1, s1 = rotate_path(path,
constrain(path_var.path_t + path_t_delta, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
p2, r2, s2 = rotate_path(path,
constrain(path_var.path_t + 2*path_t_delta, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
path_var.path_t = path_var.path_t + path_t_delta
-- tangents needs to be recalculated
tangent1_ef = p1 - p0
tangent2_ef = p2 - p1
tangent2_ef = p1 - p0
tv_unit = tangent2_ef:copy()
tv_unit:normalize()
path_var.tangent = tangent2_ef:copy()
path_var.pos = p1:copy()
path_var.roll = r1
path_var.speed = s1
-- error in position versus current point on the path
local pos_error_ef = current_measured_pos_ef - p1
@ -1872,6 +1896,10 @@ function do_path()
path_rate_ef_rads = makeVector3f(0,0,0)
end
local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1))
if path_var.count < 3 then
-- cope with small initial misalignment
path_rate_ef_dps:z(0)
end
local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps)
-- set the path roll rate
@ -1882,10 +1910,9 @@ function do_path()
calculate body frame roll rate to achieved the desired roll
angle relative to the maneuver path
--]]
local zero_roll_angle_delta = Quaternion()
zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt)
local q_delta = vectors_to_quat_rotation(tangent1_ef, tangent2_ef)
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef = q_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef:normalize()
local mf_axis = makeVector3f(1, 0, 0)