diff --git a/libraries/SITL/SIM_Motor.cpp b/libraries/SITL/SIM_Motor.cpp index 85a3c4221e..b9bae660e9 100644 --- a/libraries/SITL/SIM_Motor.cpp +++ b/libraries/SITL/SIM_Motor.cpp @@ -29,37 +29,55 @@ void Motor::calculate_forces(const Aircraft::sitl_input &input, Vector3f &rot_accel, Vector3f &thrust) const { + // fudge factors + const float arm_scale = radians(5000); + const float yaw_scale = radians(400); + + // get motor speed from 0 to 1 float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1); - rot_accel.x = -radians(5000.0) * sinf(radians(angle)) * motor_speed; - rot_accel.y = radians(5000.0) * cosf(radians(angle)) * motor_speed; - rot_accel.z = yaw_factor * motor_speed * radians(400.0); - thrust(0, 0, -motor_speed * thrust_scale); // newtons NED + + // the yaw torque of the motor + Vector3f rotor_torque(0, 0, yaw_factor * motor_speed * yaw_scale); + + // get thrust for untilted motor + thrust(0, 0, -motor_speed); + + // define the arm position relative to center of mass + Vector3f arm(arm_scale * cosf(radians(angle)), arm_scale * sinf(radians(angle)), 0); + + // work out roll and pitch of motor relative to it pointing straight up + float roll = 0, pitch = 0; + + // possibly roll and/or pitch the motor if (roll_servo >= 0) { - float roll; uint16_t servoval = input.servos[roll_servo+motor_offset]; if (roll_min < roll_max) { roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); } else { roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min); } - Matrix3f rotation; - rotation.from_euler(radians(roll), 0, 0); - rot_accel = rotation * rot_accel; - thrust = rotation * thrust; } if (pitch_servo >= 0) { - float pitch; uint16_t servoval = input.servos[pitch_servo+motor_offset]; if (pitch_min < pitch_max) { pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); } else { pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); } - Matrix3f rotation; - rotation.identity(); - rotation.from_euler(0, radians(pitch), 0); - rot_accel = rotation * rot_accel; - thrust = rotation * thrust; } + + // possibly rotate the thrust vector and the rotor torque + if (!is_zero(roll) || !is_zero(pitch)) { + Matrix3f rotation; + rotation.from_euler(radians(roll), radians(pitch), 0); + thrust = rotation * thrust; + rotor_torque = rotation * rotor_torque; + } + + // calculate total rotational acceleration + rot_accel = (arm % thrust) + rotor_torque; + + // scale the thrust + thrust = thrust * thrust_scale; } diff --git a/libraries/SITL/SIM_QuadPlane.cpp b/libraries/SITL/SIM_QuadPlane.cpp index e3023ae265..69b1865f00 100644 --- a/libraries/SITL/SIM_QuadPlane.cpp +++ b/libraries/SITL/SIM_QuadPlane.cpp @@ -49,6 +49,8 @@ QuadPlane::QuadPlane(const char *home_str, const char *frame_str) : frame_type = "tri"; } else if (strstr(frame_str, "-tilttri")) { frame_type = "tilttri"; + // fwd motor gives zero thrust + thrust_scale = 0; } else if (strstr(frame_str, "firefly")) { frame_type = "firefly"; // elevon style surfaces