Rover: mode refactoring

add ahrs reference
add set-desired-location method
move _reached_destination member in from child
calc_lateral_acceleration args renamed and added comemnts
calc_lateral_acceleration updates _yaw_error_cd
remove calc_lateral_acceleration method with no arguments
calc_throttle updates _speed_error and becomes protected
remove unused variables from calc_throttle
calc_reduced_speed_for_turn_or_distance reworked
do not use rover throttle or rtl_complete
calc_nav_steer comment updates
remove unused update_navigation
This commit is contained in:
Randy Mackay 2017-08-03 17:08:09 +09:00
parent 638ba02d5f
commit 2accb5831d
2 changed files with 119 additions and 76 deletions

View File

@ -2,6 +2,7 @@
#include "Rover.h" #include "Rover.h"
Mode::Mode() : Mode::Mode() :
ahrs(rover.ahrs),
g(rover.g), g(rover.g),
g2(rover.g2), g2(rover.g2),
channel_steer(rover.channel_steer), channel_steer(rover.channel_steer),
@ -15,12 +16,10 @@ void Mode::exit()
_exit(); _exit();
lateral_acceleration = 0.0f; lateral_acceleration = 0.0f;
rover.throttle = 500;
rover.g.pidSpeedThrottle.reset_I(); rover.g.pidSpeedThrottle.reset_I();
if (!rover.in_auto_reverse) { if (!rover.in_auto_reverse) {
rover.set_reverse(false); rover.set_reverse(false);
} }
rover.rtl_complete = false;
} }
bool Mode::enter() bool Mode::enter()
@ -29,51 +28,42 @@ bool Mode::enter()
return _enter(); return _enter();
} }
// set desired location
void Mode::set_desired_location(const struct Location& destination)
{
// record targets
_origin = rover.current_loc;
_destination = destination;
_desired_speed = g.speed_cruise;
// initialise distance
_distance_to_destination = get_distance(rover.current_loc, _destination);
_reached_destination = false;
}
// set desired heading and speed
void Mode::set_desired_heading_and_speed(float yaw_angle_cd, float target_speed)
{
// handle initialisation
_reached_destination = false;
// record targets
_desired_yaw_cd = yaw_angle_cd;
_desired_speed = target_speed;
}
void Mode::calc_throttle(float target_speed) void Mode::calc_throttle(float target_speed)
{ {
int16_t &throttle = rover.throttle; // get ground speed from vehicle
const int32_t next_navigation_leg_cd = rover.next_navigation_leg_cd; const float &groundspeed = rover.ground_speed;
const AP_AHRS &ahrs = rover.ahrs;
const float wp_distance = rover.wp_distance; // calculate ground speed and ground speed error
float &groundspeed_error = rover.groundspeed_error; _speed_error = fabsf(target_speed) - groundspeed;
const float ground_speed = rover.ground_speed;
const float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise; const float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise;
const int throttle_target = throttle_base + calc_throttle_nudge(); const float throttle_target = throttle_base + calc_throttle_nudge();
/* float throttle = throttle_target + (g.pidSpeedThrottle.get_pid(_speed_error * 100.0f) / 100.0f);
reduce target speed in proportion to turning rate, up to the
SPEED_TURN_GAIN percentage.
*/
float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g * GRAVITY_MSS));
steer_rate = constrain_float(steer_rate, 0.0f, 1.0f);
// use g.speed_turn_gain for a 90 degree turn, and in proportion
// for other turn angles
const int32_t turn_angle = wrap_180_cd(next_navigation_leg_cd - ahrs.yaw_sensor);
const float speed_turn_ratio = constrain_float(fabsf(turn_angle / 9000.0f), 0.0f, 1.0f);
const float speed_turn_reduction = (100 - g.speed_turn_gain) * speed_turn_ratio * 0.01f;
float reduction = 1.0f - steer_rate * speed_turn_reduction;
if (is_autopilot_mode() && rover.mode_guided.guided_mode != ModeGuided::Guided_Velocity && wp_distance <= g.speed_turn_dist) {
// in auto-modes we reduce speed when approaching waypoints
const float reduction2 = 1.0f - speed_turn_reduction;
if (reduction2 < reduction) {
reduction = reduction2;
}
}
// reduce the target speed by the reduction factor
target_speed *= reduction;
groundspeed_error = fabsf(target_speed) - ground_speed;
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100.0f) / 100.0f);
// also reduce the throttle by the reduction factor. This gives a
// much faster response in turns
throttle *= reduction;
if (rover.in_reverse) { if (rover.in_reverse) {
g2.motors.set_throttle(constrain_int16(-throttle, -g.throttle_max, -g.throttle_min)); g2.motors.set_throttle(constrain_int16(-throttle, -g.throttle_max, -g.throttle_min));
@ -81,7 +71,7 @@ void Mode::calc_throttle(float target_speed)
g2.motors.set_throttle(constrain_int16(throttle, g.throttle_min, g.throttle_max)); g2.motors.set_throttle(constrain_int16(throttle, g.throttle_min, g.throttle_max));
} }
if (!rover.in_reverse && g.braking_percent != 0 && groundspeed_error < -g.braking_speederr) { if (!rover.in_reverse && g.braking_percent != 0 && _speed_error < -g.braking_speederr) {
// the user has asked to use reverse throttle to brake. Apply // the user has asked to use reverse throttle to brake. Apply
// it in proportion to the ground speed error, but only when // it in proportion to the ground speed error, but only when
// our ground speed error is more than BRAKING_SPEEDERR. // our ground speed error is more than BRAKING_SPEEDERR.
@ -89,7 +79,7 @@ void Mode::calc_throttle(float target_speed)
// We use a linear gain, with 0 gain at a ground speed error // We use a linear gain, with 0 gain at a ground speed error
// of braking_speederr, and 100% gain when groundspeed_error // of braking_speederr, and 100% gain when groundspeed_error
// is 2*braking_speederr // is 2*braking_speederr
const float brake_gain = constrain_float(((-groundspeed_error)-g.braking_speederr)/g.braking_speederr, 0.0f, 1.0f); const float brake_gain = constrain_float(((-_speed_error)-g.braking_speederr)/g.braking_speederr, 0.0f, 1.0f);
const int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain; const int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain;
g2.motors.set_throttle(constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min)); g2.motors.set_throttle(constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min));
@ -97,19 +87,8 @@ void Mode::calc_throttle(float target_speed)
// go negative // go negative
rover.set_reverse(true); rover.set_reverse(true);
} }
if (rover.mode_guided.guided_mode != ModeGuided::Guided_Velocity) {
if (rover.use_pivot_steering()) {
// In Guided Velocity, only the steering input is used to calculate the pivot turn.
g2.motors.set_throttle(0.0f);
}
}
} }
void Mode::calc_lateral_acceleration()
{
calc_lateral_acceleration(rover.current_loc, rover.next_WP);
}
// calculate pilot input to nudge throttle up or down // calculate pilot input to nudge throttle up or down
int16_t Mode::calc_throttle_nudge() int16_t Mode::calc_throttle_nudge()
@ -129,21 +108,59 @@ int16_t Mode::calc_throttle_nudge()
return throttle_nudge; return throttle_nudge;
} }
/* // calculated a reduced speed(in m/s) based on yaw error and lateral acceleration and/or distance to a waypoint
* Calculate desired turn angles (in medium freq loop) // should be called after calc_lateral_acceleration and before calc_throttle
*/ // relies on these internal members being updated: lateral_acceleration, _yaw_error_cd, _distance_to_destination
void Mode::calc_lateral_acceleration(const struct Location &last_WP, const struct Location &next_WP) float Mode::calc_reduced_speed_for_turn_or_distance(float desired_speed)
{
// this method makes use the following internal variables
const float yaw_error_cd = _yaw_error_cd;
const float target_lateral_accel_G = lateral_acceleration;
const float distance_to_waypoint = _distance_to_destination;
// calculate the yaw_error_ratio which is the error (capped at 90degrees) expressed as a ratio (from 0 ~ 1)
float yaw_error_ratio = constrain_float(fabsf(yaw_error_cd / 9000.0f), 0.0f, 1.0f);
// apply speed_turn_gain parameter (expressed as a percentage) to yaw_error_ratio
yaw_error_ratio *= (100 - g.speed_turn_gain) * 0.01f;
// calculate absolute lateral acceleration expressed as a ratio (from 0 ~ 1) of the vehicle's maximum lateral acceleration
float lateral_accel_ratio = constrain_float(fabsf(target_lateral_accel_G / (g.turn_max_g * GRAVITY_MSS)), 0.0f, 1.0f);
// calculate a lateral acceleration based speed scaling
float lateral_accel_speed_scaling = 1.0f - lateral_accel_ratio * yaw_error_ratio;
// calculate a pivot steering based speed scaling (default to no reduction)
float pivot_speed_scaling = 1.0f;
if (rover.use_pivot_steering(yaw_error_cd)) {
pivot_speed_scaling = 0.0f;
}
// calculate a waypoint distance based scaling (default to no reduction)
float distance_speed_scaling = 1.0f;
if (is_positive(distance_to_waypoint)) {
distance_speed_scaling = 1.0f - yaw_error_ratio;
}
// return minimum speed
return desired_speed * MIN(MIN(lateral_accel_speed_scaling, distance_speed_scaling), pivot_speed_scaling);
}
// calculate the lateral acceleration target to cause the vehicle to drive along the path from origin to destination
// this function update lateral_acceleration and _yaw_error_cd members
void Mode::calc_lateral_acceleration(const struct Location &origin, const struct Location &destination)
{ {
// Calculate the required turn of the wheels // Calculate the required turn of the wheels
// negative error = left turn // negative error = left turn
// positive error = right turn // positive error = right turn
rover.nav_controller->update_waypoint(last_WP, next_WP); rover.nav_controller->update_waypoint(origin, destination);
lateral_acceleration = rover.nav_controller->lateral_acceleration(); lateral_acceleration = rover.nav_controller->lateral_acceleration();
if (rover.use_pivot_steering()) { _yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor);
const int16_t bearing_error = wrap_180_cd(rover.nav_controller->target_bearing_cd() - rover.ahrs.yaw_sensor) / 100; if (rover.use_pivot_steering(_yaw_error_cd)) {
if (bearing_error > 0) { if (is_positive(_yaw_error_cd)) {
lateral_acceleration = g.turn_max_g * GRAVITY_MSS; lateral_acceleration = g.turn_max_g * GRAVITY_MSS;
} else { }
if (is_negative(_yaw_error_cd)) {
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS; lateral_acceleration = -g.turn_max_g * GRAVITY_MSS;
} }
} }
@ -154,7 +171,7 @@ void Mode::calc_lateral_acceleration(const struct Location &last_WP, const struc
*/ */
void Mode::calc_nav_steer() void Mode::calc_nav_steer()
{ {
// add in obstacle avoidance // add obstacle avoidance response to lateral acceleration target
if (!rover.in_reverse) { if (!rover.in_reverse) {
lateral_acceleration += (rover.obstacle.turn_angle / 45.0f) * g.turn_max_g; lateral_acceleration += (rover.obstacle.turn_angle / 45.0f) * g.turn_max_g;
} }

View File

@ -27,13 +27,6 @@ public:
// convert user input to targets, implement high level control for this mode // convert user input to targets, implement high level control for this mode
virtual void update() = 0; virtual void update() = 0;
// calculates the amount of throttle that should be output based
// on things like proximity to corners and current speed
virtual void calc_throttle(float target_speed);
// called to determine where the vehicle should go next, and how it should get there
virtual void update_navigation() { } // most modes don't navigate
// //
// attributes of the mode // attributes of the mode
// //
@ -61,6 +54,22 @@ public:
// true if heading is controlled // true if heading is controlled
virtual bool attitude_stabilized() const { return true; } virtual bool attitude_stabilized() const { return true; }
//
// navigation methods
//
// return distance (in meters) to destination
virtual float get_distance_to_destination() const { return 0.0f; }
// set desired location and speed
virtual void set_desired_location(const struct Location& destination);
// true if vehicle has reached desired location. defaults to true because this is normally used by missions and we do not want the mission to become stuck
virtual bool reached_destination() { return true; }
virtual void set_desired_heading_and_speed(float yaw_angle_cd, float target_speed);
// get speed error in m/s, returns zero for modes that do not control speed
float speed_error() { return _speed_error; }
// Navigation control variables // Navigation control variables
// The instantaneous desired lateral acceleration in m/s/s // The instantaneous desired lateral acceleration in m/s/s
float lateral_acceleration; float lateral_acceleration;
@ -76,21 +85,38 @@ protected:
// calculate steering angle given a desired lateral acceleration // calculate steering angle given a desired lateral acceleration
virtual void calc_nav_steer(); virtual void calc_nav_steer();
// calculate desired lateral acceleration using current location and target held in next_WP
virtual void calc_lateral_acceleration();
// calculate desired lateral acceleration // calculate desired lateral acceleration
void calc_lateral_acceleration(const struct Location &last_wp, const struct Location &next_WP); void calc_lateral_acceleration(const struct Location &origin, const struct Location &destination);
// calculates the amount of throttle that should be output based
// on things like proximity to corners and current speed
virtual void calc_throttle(float target_speed);
// calculate pilot input to nudge throttle up or down // calculate pilot input to nudge throttle up or down
int16_t calc_throttle_nudge(); int16_t calc_throttle_nudge();
// calculated a reduced speed(in m/s) based on yaw error and lateral acceleration and/or distance to a waypoint
// should be called after calc_lateral_acceleration and before calc_throttle
// relies on these internal members being updated: lateral_acceleration, _yaw_error_cd, _distance_to_destination
float calc_reduced_speed_for_turn_or_distance(float desired_speed);
// references to avoid code churn: // references to avoid code churn:
class AP_AHRS &ahrs;
class Parameters &g; class Parameters &g;
class ParametersG2 &g2; class ParametersG2 &g2;
class RC_Channel *&channel_steer; // TODO : Pointer reference ? class RC_Channel *&channel_steer; // TODO : Pointer reference ?
class RC_Channel *&channel_throttle; class RC_Channel *&channel_throttle;
class AP_Mission &mission; class AP_Mission &mission;
// private members for waypoint navigation
Location _origin; // origin Location (vehicle will travel from the origin to the destination)
Location _destination; // destination Location when in Guided_WP
float _distance_to_destination; // distance from vehicle to final destination in meters
bool _reached_destination; // true once the vehicle has reached the destination
float _desired_yaw_cd; // desired yaw in centi-degrees
float _yaw_error_cd; // error between desired yaw and actual yaw in centi-degrees
float _desired_speed; // desired speed in m/s
float _speed_error; // ground speed error in m/s
}; };