ArduPPM: Experimental PPM encoder to test possible fail-safe detection improvements.

This commit is contained in:
John Arne Birkeland 2012-11-22 14:24:53 +01:00
parent 386ef45fbb
commit 222c9cfca3

View File

@ -0,0 +1,866 @@
// !!!!!!!!!! EXPERIMENTAL TEST VERSION - USE WITH CAUTION - DO NOT RELEASE PUBLIC FIRMWARE !!!!!!!!!!
// -------------------------------------------------------------
// PPM ENCODER V2.3.11
// -------------------------------------------------------------
// Improved servo to ppm for ArduPilot MEGA v1.x (ATmega328p),
// PhoneDrone and APM2 (ATmega32u2)
// By: John Arne Birkeland - 2012
// APM v1.x adaptation and "difficult" receiver testing by Olivier ADLER
// -------------------------------------------------------------
// Changelog:
// 01-08-2011
// V2.2.3 - Changed back to BLOCKING interrupts.
// Assembly PPM compare interrupt can be switch back to non-blocking, but not recommended.
// V2.2.3 - Implemented 0.5us cut filter to remove servo input capture jitter.
// 04-08-2011
// V2.2.4 - Implemented PPM passtrough funtion.
// Shorting channel 2&3 enabled ppm passtrough on channel 1.
// 04-08-2011
// V2.2.5 - Implemented simple average filter to smooth servo input capture jitter.
// Takes fewer clocks to execute and has better performance then cut filter.
// 05-08-2011
// V2.2.51 - Minor bug fixes.
// 06-08-2011
// V2.2.6 - PPM passtrough failsafe implemented.
// The PPM generator will be activated and output failsafe values while ppm passtrough signal is missing.
// 01-09-2011
// V2.2.61 - Temporary MUX pin always high patch for APM beta board
// 22-09-2011
// V2.2.62 - ATmegaXXU2 USB connection status pin (PC2) for APM UART MUX selection (removed temporary high patch)
// - Removed assembly optimized PPM generator (not usable for production release)
// 23-09-2011
// V2.2.63 - Average filter disabled
// 24-09-2011
// V2.2.64 - Added distincts Power on / Failsafe PPM values
// - Changed CH5 (mode selection) PPM Power on and Failsafe values to 1555 (Flight mode 4)
// - Added brownout detection : Failsafe values are copied after a brownout reset instead of power on values
// 25-09-2011
// V2.2.65 - Implemented PPM output delay until input signal is detected (PWM and PPM pass-trough mode)
// - Changed brownout detection and FailSafe handling to work with XXU2 chips
// - Minor variable and define naming changes to enhance readability
// 15-03-2012
// V2.2.66 - Added APM2 (ATmega32U2) support for using TX and RX status leds to indicate PWM and PPM traffic
// - <RX>: <OFF> = no pwm input detected, <TOGGLE> = speed of toggle indicate how many channel are active, <ON> = input lost (failsafe)
// - <TX>: <OFF> = ppm output not started, <FAST TOGGLE> = normal PWM->PPM output or PPM passtrough failsafe, <SLOW TOGGLE> = PPM passtrough
// 03-06-2012
// V2.2.67 - Implemented detection and failsafe (throttle = 900us) for missing throttle signal.
// 04-06-2012
// V2.2.68 - Fixed possible logic flaw in throttle failsafe reset if _JITTER_FILTER_ is enabled
// 02-11-2012
// V2.2.69 - Added PPM output positive polarity - mainly for standalone PPM encoder board use
// 03-11-2012
// V2.3.0 - Implemented single channel fail-safe detection for all inputs
// 16-11-2012
// V2.3.1 - Improved watchdog timer reset, so that only valid input signals will prevent the watchdog timer from triggering
// 22-11-2012
// V2.3.11 - Very experimental test forcing throttle fail-safe (RTL) on single channel loss. !DO NOT RELEASE TO PUBLIC!
// -------------------------------------------------------------
#ifndef _PPM_ENCODER_H_
#define _PPM_ENCODER_H_
#include <avr/io.h>
// -------------------------------------------------------------
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>
// -------------------------------------------------------------
// SERVO INPUT FILTERS
// -------------------------------------------------------------
// Using both filters is not recommended and may reduce servo input resolution
// #define _AVERAGE_FILTER_ // Average filter to smooth servo input capture jitter
// #define _JITTER_FILTER_ // Cut filter to remove 0,5us servo input capture jitter
// -------------------------------------------------------------
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#ifndef true
#define true 1
#endif
#ifndef false
#define false 0
#endif
#ifndef bool
#define bool _Bool
#endif
// Version stamp for firmware hex file ( decode hex file using <avr-objdump -s file.hex> and look for "ArduPPM" string )
const char ver[15] = "ArduPPMv2.3.11";
// -------------------------------------------------------------
// INPUT MODE
// -------------------------------------------------------------
#define JUMPER_SELECT_MODE 0 // Default - PPM passtrough mode selected if channel 2&3 shorted. Normal servo input (pwm) if not shorted.
#define SERVO_PWM_MODE 1 // Normal 8 channel servo (pwm) input
#define PPM_PASSTROUGH_MODE 2 // PPM signal passtrough on channel 1
#define JETI_MODE 3 // Reserved
#define SPEKTRUM_MODE 4 // Reserved for Spektrum satelitte on channel 1
// Servo input mode (jumper (default), pwm, ppm, jeti or spektrum)
volatile uint8_t servo_input_mode = JUMPER_SELECT_MODE;
// -------------------------------------------------------------
// Number of Timer1 ticks in one microsecond
#define ONE_US F_CPU / 8 / 1000 / 1000
// 400us PPM pre pulse
#define PPM_PRE_PULSE ONE_US * 400
// -------------------------------------------------------------
// SERVO LIMIT VALUES
// -------------------------------------------------------------
// Servo minimum position
#define PPM_SERVO_MIN ONE_US * 900 - PPM_PRE_PULSE
// Servo center position
#define PPM_SERVO_CENTER ONE_US * 1500 - PPM_PRE_PULSE
// Servo maximum position
#define PPM_SERVO_MAX ONE_US * 2100 - PPM_PRE_PULSE
// Throttle default at power on
#define PPM_THROTTLE_DEFAULT ONE_US * 1100 - PPM_PRE_PULSE
// Throttle during failsafe
#define PPM_THROTTLE_FAILSAFE ONE_US * 900 - PPM_PRE_PULSE
// CH5 power on values (mode selection channel)
#define PPM_CH5_MODE_4 ONE_US * 1555 - PPM_PRE_PULSE
// -------------------------------------------------------------
// PPM OUTPUT SETTINGS
// -------------------------------------------------------------
// #define _POSITIVE_PPM_FRAME_ // Switch to positive pulse PPM
// (the actual timing is encoded in the length of the low between two pulses)
// Number of servo input channels
#define SERVO_CHANNELS 8
// PPM period 18.5ms - 26.5ms (54hz - 37Hz)
#define PPM_PERIOD ONE_US * ( 22500 - ( 8 * 1500 ) )
// Size of ppm[..] data array ( servo channels * 2 + 2)
#define PPM_ARRAY_MAX 18
// -------------------------------------------------------------
// SERVO FAILSAFE VALUES
// -------------------------------------------------------------
const uint16_t failsafe_ppm[ PPM_ARRAY_MAX ] =
{
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 1
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 2
PPM_PRE_PULSE,
PPM_THROTTLE_FAILSAFE, // Channel 3 (throttle)
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 4
PPM_PRE_PULSE,
PPM_CH5_MODE_4, // Channel 5
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 6
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 7
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 8
PPM_PRE_PULSE,
PPM_PERIOD
};
// -------------------------------------------------------------
// Data array for storing ppm (8 channels) pulse widths.
// -------------------------------------------------------------
volatile uint16_t ppm[ PPM_ARRAY_MAX ] =
{
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 1
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 2
PPM_PRE_PULSE,
PPM_THROTTLE_DEFAULT, // Channel 3 (throttle)
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 4
PPM_PRE_PULSE,
PPM_CH5_MODE_4, // Channel 5
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 6
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 7
PPM_PRE_PULSE,
PPM_SERVO_CENTER, // Channel 8
PPM_PRE_PULSE,
PPM_PERIOD
};
// -------------------------------------------------------------
// Data arraw for storing ppm timeout (missing channel detection)
// -------------------------------------------------------------
#define PPM_TIMEOUT_VALUE 40 // ~1sec before triggering missing channel detection
volatile uint8_t ppm_timeout[ PPM_ARRAY_MAX ];
// Servo input channel connected flag
volatile bool servo_input_connected[ PPM_ARRAY_MAX ];
// AVR parameters for PhoneDrone and APM2 boards using ATmega32u2
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
#define SERVO_DDR DDRB
#define SERVO_PORT PORTB
#define SERVO_INPUT PINB
#define SERVO_INT_VECTOR PCINT0_vect
#define SERVO_INT_MASK PCMSK0
#define SERVO_INT_CLEAR_FLAG PCIF0
#define SERVO_INT_ENABLE PCIE0
#define SERVO_TIMER_CNT TCNT1
#define PPM_DDR DDRC
#define PPM_PORT PORTC
#define PPM_OUTPUT_PIN PC6
#define PPM_INT_VECTOR TIMER1_COMPA_vect
#define PPM_COMPARE OCR1A
#define PPM_COMPARE_FLAG COM1A0
#define PPM_COMPARE_ENABLE OCIE1A
#define PPM_COMPARE_FORCE_MATCH FOC1A
#define USB_DDR DDRC
#define USB_PORT PORTC
#define USB_PIN PC2
// true if we have received a USB device connect event
static bool usb_connected;
// USB connected event
void EVENT_USB_Device_Connect(void)
{
// Toggle USB pin high if USB is connected
USB_PORT |= (1 << USB_PIN);
usb_connected = true;
// this unsets the pin connected to PA1 on the 2560
// when the bit is clear, USB is connected
PORTD &= ~1;
}
// USB disconnect event
void EVENT_USB_Device_Disconnect(void)
{
// toggle USB pin low if USB is disconnected
USB_PORT &= ~(1 << USB_PIN);
usb_connected = false;
// this sets the pin connected to PA1 on the 2560
// when the bit is clear, USB is connected
PORTD |= 1;
}
// AVR parameters for ArduPilot MEGA v1.4 PPM Encoder (ATmega328P)
#elif defined (__AVR_ATmega328P__) || defined (__AVR_ATmega328__)
#define SERVO_DDR DDRD
#define SERVO_PORT PORTD
#define SERVO_INPUT PIND
#define SERVO_INT_VECTOR PCINT2_vect
#define SERVO_INT_MASK PCMSK2
#define SERVO_INT_CLEAR_FLAG PCIF2
#define SERVO_INT_ENABLE PCIE2
#define SERVO_TIMER_CNT TCNT1
#define PPM_DDR DDRB
#define PPM_PORT PORTB
#define PPM_OUTPUT_PIN PB2
#define PPM_INT_VECTOR TIMER1_COMPB_vect
#define PPM_COMPARE OCR1B
#define PPM_COMPARE_FLAG COM1B0
#define PPM_COMPARE_ENABLE OCIE1B
#define PPM_COMPARE_FORCE_MATCH FOC1B
#else
#error NO SUPPORTED DEVICE FOUND! (ATmega16u2 / ATmega32u2 / ATmega328p)
#endif
// Used to force throttle fail-safe mode (RTL)
volatile bool throttle_failsafe_force = false;
// Used to indicate invalid SERVO input signals
volatile uint8_t servo_input_errors = 0;
// Used to indicate missing SERVO input signals
volatile bool servo_input_missing = true;
// Used to indicate if PPM generator is active
volatile bool ppm_generator_active = false;
// Used to indicate a brownout restart
volatile bool brownout_reset = false;
// ------------------------------------------------------------------------------
// PPM GENERATOR START - TOGGLE ON COMPARE INTERRUPT ENABLE
// ------------------------------------------------------------------------------
void ppm_start( void )
{
// Prevent reenabling an already active PPM generator
if( ppm_generator_active ) return;
// Store interrupt status and register flags
uint8_t SREG_tmp = SREG;
// Stop interrupts
cli();
// Make sure initial output state is low
PPM_PORT &= ~(1 << PPM_OUTPUT_PIN);
// Wait for output pin to settle
//_delay_us( 1 );
// Set initial compare toggle to maximum (32ms) to give other parts of the system time to start
SERVO_TIMER_CNT = 0;
PPM_COMPARE = 0xFFFF;
// Set toggle on compare output
TCCR1A = (1 << PPM_COMPARE_FLAG);
// Set TIMER1 8x prescaler
TCCR1B = ( 1 << CS11 );
#if defined (_POSITIVE_PPM_FRAME_)
// Force output compare to reverse polarity
TCCR1C |= (1 << PPM_COMPARE_FORCE_MATCH);
#endif
// Enable output compare interrupt
TIMSK1 |= (1 << PPM_COMPARE_ENABLE);
// Indicate that PPM generator is active
ppm_generator_active = true;
// Restore interrupt status and register flags
SREG = SREG_tmp;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn on TX led if PPM generator is active
PORTD &= ~( 1<< PD5 );
#endif
}
// ------------------------------------------------------------------------------
// PPM GENERATOR STOP - TOGGLE ON COMPARE INTERRUPT DISABLE
// ------------------------------------------------------------------------------
void ppm_stop( void )
{
// Store interrupt status and register flags
uint8_t SREG_tmp = SREG;
// Stop interrupts
cli();
// Disable output compare interrupt
TIMSK1 &= ~(1 << PPM_COMPARE_ENABLE);
// Reset TIMER1 registers
TCCR1A = 0;
TCCR1B = 0;
// Indicate that PPM generator is not active
ppm_generator_active = false;
// Restore interrupt status and register flags
SREG = SREG_tmp;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn off TX led if PPM generator is off
PORTD |= ( 1<< PD5 );
#endif
}
// ------------------------------------------------------------------------------
// Watchdog Interrupt (interrupt only mode, no reset)
// ------------------------------------------------------------------------------
ISR( WDT_vect ) // If watchdog is triggered then enable missing signal flag and copy power on or failsafe positions
{
// Use failsafe values if PPM generator is active or if chip has been reset from a brown-out
if ( ppm_generator_active || brownout_reset )
{
// Copy failsafe values to ppm[..]
for ( uint8_t i = 0; i < PPM_ARRAY_MAX; i++ )
{
ppm[ i ] = failsafe_ppm[ i ];
}
}
// If we are in PPM passtrough mode and a input signal has been detected, or if chip has been reset from a brown_out then start the PPM generator.
if( ( servo_input_mode == PPM_PASSTROUGH_MODE && servo_input_missing == false ) || brownout_reset )
{
// Start PPM generator
ppm_start();
brownout_reset = false;
}
// Set missing receiver signal flag
servo_input_missing = true;
// Reset servo input error flag
servo_input_errors = 0;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn on RX led if failsafe has triggered after ppm generator i active
if( ppm_generator_active ) PORTD &= ~( 1<< PD4 );
#endif
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// SERVO/PPM INPUT - PIN CHANGE INTERRUPT
// ------------------------------------------------------------------------------
ISR( SERVO_INT_VECTOR )
{
// Servo pulse start timing
//static uint16_t servo_start[ SERVO_CHANNELS ] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t servo_start[ PPM_ARRAY_MAX ] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // We sacrefice some memory but save instructions by working with ppm index count (18) instead of input channel count (8)
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle LED delay
static uint8_t led_delay = 0;
#endif
// Servo input pin storage
static uint8_t servo_pins_old = 0;
// Used to store current servo input pins
uint8_t servo_pins;
// Read current servo pulse change time
uint16_t servo_time = SERVO_TIMER_CNT;
// ------------------------------------------------------------------------------
// PPM passtrough mode ( signal passtrough from channel 1 to ppm output pin)
// ------------------------------------------------------------------------------
if( servo_input_mode == PPM_PASSTROUGH_MODE )
{
// Has watchdog timer failsafe started PPM generator? If so we need to stop it.
if( ppm_generator_active )
{
// Stop PPM generator
ppm_stop();
}
// PPM (channel 1) input pin is high
if( SERVO_INPUT & 1 )
{
// Set PPM output pin high
PPM_PORT |= (1 << PPM_OUTPUT_PIN);
}
// PPM (channel 1) input pin is low
else
{
// Set PPM output pin low
PPM_PORT &= ~(1 << PPM_OUTPUT_PIN);
}
// Reset Watchdog Timer
wdt_reset();
// Set servo input missing flag false to indicate that we have received servo input signals
servo_input_missing = false;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle TX LED at PPM passtrough
if( ++led_delay > 128 ) // Toggle every 128th pulse
{
// Toggle TX led
PIND |= ( 1<< PD5 );
led_delay = 0;
}
#endif
// Leave interrupt
return;
}
// ------------------------------------------------------------------------------
// SERVO PWM MODE
// ------------------------------------------------------------------------------
uint8_t servo_change;
uint8_t servo_pin ;
//uint8_t servo_channel ;
uint8_t ppm_channel;
CHECK_PINS_START: // Start of servo input check
// Store current servo input pins
servo_pins = SERVO_INPUT;
// Calculate servo input pin change mask
servo_change = servo_pins ^ servo_pins_old;
// Set initial servo pin, channel and ppm[..] index
servo_pin = 1;
//servo_channel = 0;
ppm_channel = 1;
CHECK_PINS_LOOP: // Input servo pin check loop
// Check for pin change on current servo channel
if( servo_change & servo_pin )
{
// High (raising edge)
if( servo_pins & servo_pin )
{
//servo_start[ servo_channel ] = servo_time;
servo_start[ ppm_channel ] = servo_time;
}
else
{
// Get servo pulse width
//uint16_t servo_width = servo_time - servo_start[ servo_channel ] - PPM_PRE_PULSE;
uint16_t servo_width = servo_time - servo_start[ ppm_channel ] - PPM_PRE_PULSE;
// Check that servo pulse signal is valid before sending to ppm encoder
if( servo_width > PPM_SERVO_MAX ) goto CHECK_PINS_ERROR;
if( servo_width < PPM_SERVO_MIN ) goto CHECK_PINS_ERROR;
// Reset Watchdog Timer
wdt_reset();
// Channel has received a valid signal, so it must be connected
servo_input_connected [ ppm_channel ] = true;
// Check for forced throttle fail-safe
if( throttle_failsafe_force && ppm_channel == 5 )
{
// Force throttle fail-safe
ppm_timeout[ ppm_channel ] = 255;
}
else
{
//Reset ppm single channel fail-safe timeout
ppm_timeout[ ppm_channel ] = 0;
}
#ifdef _AVERAGE_FILTER_
// Average filter to smooth input jitter
servo_width += ppm[ ppm_channel ];
servo_width >>= 1;
#endif
#ifdef _JITTER_FILTER_
// 0.5us cut filter to remove input jitter
int16_t ppm_tmp = ppm[ ppm_channel ] - servo_width;
if( ppm_tmp == 1 ) goto CHECK_PINS_NEXT;
if( ppm_tmp == -1 ) goto CHECK_PINS_NEXT;
#endif
// Update ppm[..]
ppm[ ppm_channel ] = servo_width;
}
}
CHECK_PINS_NEXT:
// Select next servo pin
servo_pin <<= 1;
// Select next servo channel
//servo_channel++;
// Select next ppm[..] index
ppm_channel += 2;
// Check channel and process if needed
//if( servo_channel < SERVO_CHANNELS ) goto CHECK_PINS_LOOP;
if( servo_pin ) goto CHECK_PINS_LOOP; // Bitshift wraps to zero (false)
goto CHECK_PINS_DONE;
CHECK_PINS_ERROR:
// Used to indicate invalid servo input signals
servo_input_errors++;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Delay LED toggle
led_delay = 0;
#endif
goto CHECK_PINS_NEXT;
// All servo input pins has now been processed
CHECK_PINS_DONE:
// Set servo input missing flag false to indicate that we have received servo input signals
servo_input_missing = false;
// Store current servo input pins for next check
servo_pins_old = servo_pins;
// Start PPM generator if not already running
if( ppm_generator_active == false ) ppm_start();
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle RX LED when finished receiving servo pulses
if( ++led_delay > 64 ) // Toggle led every 64th time
{
PIND |= ( 1<< PD4 );
led_delay = 0;
}
#endif
//Has servo input changed while processing pins, if so we need to re-check pins
if( servo_pins != SERVO_INPUT ) goto CHECK_PINS_START;
// Clear interrupt event from already processed pin changes
PCIFR |= (1 << SERVO_INT_CLEAR_FLAG);
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM OUTPUT - TIMER1 COMPARE INTERRUPT
// ------------------------------------------------------------------------------
ISR( PPM_INT_VECTOR )
{
// Current active ppm channel
static uint8_t ppm_channel = PPM_ARRAY_MAX - 1;
// Update timing for next compare toggle with either current ppm input value, or fail-safe value if there is a channel timeout.
if( ppm_timeout[ ppm_channel ] > PPM_TIMEOUT_VALUE )
{
// Use ppm fail-safe value
PPM_COMPARE += failsafe_ppm[ ppm_channel ];
// Did we lose an active servo input channel? If so force throttle fail-safe (RTL)
if( servo_input_connected[ ppm_channel ] )
{
throttle_failsafe_force = true;
}
}
else
{
// Use latest ppm input value
PPM_COMPARE += ppm[ ppm_channel ];
// Increment channel timeout (reset to zero in input interrupt each time a valid signal is detected)
ppm_timeout[ ppm_channel ] ++;
}
// Select the next ppm channel
if( ++ppm_channel >= PPM_ARRAY_MAX )
{
ppm_channel = 0;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Blink TX LED when PPM generator has finished a pulse train
PIND |= ( 1<< PD5 );
#endif
}
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM READ - INTERRUPT SAFE PPM SERVO CHANNEL READ
// ------------------------------------------------------------------------------
uint16_t ppm_read_channel( uint8_t channel )
{
// Limit channel to valid value
uint8_t _channel = channel;
if( _channel == 0 ) _channel = 1;
if( _channel > SERVO_CHANNELS ) _channel = SERVO_CHANNELS;
// Calculate ppm[..] position
uint8_t ppm_index = ( _channel << 1 ) + 1;
// Read ppm[..] in a non blocking interrupt safe manner
uint16_t ppm_tmp = ppm[ ppm_index ];
while( ppm_tmp != ppm[ ppm_index ] ) ppm_tmp = ppm[ ppm_index ];
// Return as normal servo value
return ppm_tmp + PPM_PRE_PULSE;
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM ENCODER INIT
// ------------------------------------------------------------------------------
void ppm_encoder_init( void )
{
// ATmegaXXU2 only init code
// ------------------------------------------------------------------------------
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// ------------------------------------------------------------------------------
// Reset Source checkings
// ------------------------------------------------------------------------------
if (MCUSR & 1) // Power-on Reset
{
MCUSR=0; // Clear MCU Status register
// custom code here
}
else if (MCUSR & 2) // External Reset
{
MCUSR=0; // Clear MCU Status register
// custom code here
}
else if (MCUSR & 4) // Brown-Out Reset
{
MCUSR=0; // Clear MCU Status register
brownout_reset=true;
}
else // Watchdog Reset
{
MCUSR=0; // Clear MCU Status register
// custom code here
}
// APM USB connection status UART MUX selector pin
// ------------------------------------------------------------------------------
USB_DDR |= (1 << USB_PIN); // Set USB pin to output
#endif
// USE JUMPER TO CHECK FOR PWM OR PPM PASSTROUGH MODE (channel 2&3 shorted)
// ------------------------------------------------------------------------------
if( servo_input_mode == JUMPER_SELECT_MODE )
{
// channel 3 status counter
uint8_t channel3_status = 0;
// Set channel 3 to input
SERVO_DDR &= ~(1 << 2);
// Enable channel 3 pullup
SERVO_PORT |= (1 << 2);
// Set channel 2 to output
SERVO_DDR |= (1 << 1);
// Set channel 2 output low
SERVO_PORT &= ~(1 << 1);
_delay_us (10);
// Increment channel3_status if channel 3 is set low by channel 2
if( ( SERVO_INPUT & (1 << 2) ) == 0 ) channel3_status++;
// Set channel 2 output high
SERVO_PORT |= (1 << 1);
_delay_us (10);
// Increment channel3_status if channel 3 is set high by channel 2
if( ( SERVO_INPUT & (1 << 2) ) != 0 ) channel3_status++;
// Set channel 2 output low
SERVO_PORT &= ~(1 << 1);
_delay_us (10);
// Increment channel3_status if channel 3 is set low by channel 2
if( ( SERVO_INPUT & (1 << 2) ) == 0 ) channel3_status++;
// Set servo input mode based on channel3_status
if( channel3_status == 3 ) servo_input_mode = PPM_PASSTROUGH_MODE;
else servo_input_mode = SERVO_PWM_MODE;
}
// SERVO/PPM INPUT PINS
// ------------------------------------------------------------------------------
// Set all servo input pins to inputs
SERVO_DDR = 0;
// Activate pullups on all input pins
SERVO_PORT |= 0xFF;
#if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// on 32U2 set PD0 to be an output, and clear the bit. This tells
// the 2560 that USB is connected. The USB connection event fires
// later to set the right value
DDRD |= 1;
if (usb_connected) {
PORTD &= ~1;
} else {
PORTD |= 1;
}
#endif
// SERVO/PPM INPUT - PIN CHANGE INTERRUPT
// ------------------------------------------------------------------------------
if( servo_input_mode == SERVO_PWM_MODE )
{
// Set servo input interrupt pin mask to all 8 servo input channels
SERVO_INT_MASK = 0xFF;
}
if( servo_input_mode == PPM_PASSTROUGH_MODE )
{
// Set servo input interrupt pin mask to servo input channel 1
SERVO_INT_MASK = 0x01;
}
// Enable servo input interrupt
PCICR |= (1 << SERVO_INT_ENABLE);
// PPM OUTPUT PIN
// ------------------------------------------------------------------------------
// Set PPM pin to output
PPM_DDR |= (1 << PPM_OUTPUT_PIN);
// ------------------------------------------------------------------------------
// Enable watchdog interrupt mode
// ------------------------------------------------------------------------------
// Disable watchdog
wdt_disable();
// Reset watchdog timer
wdt_reset();
// Start timed watchdog setup sequence
WDTCSR |= (1<<WDCE) | (1<<WDE );
// Set 250 ms watchdog timeout and enable interrupt
WDTCSR = (1<<WDIE) | (1<<WDP2);
}
// ------------------------------------------------------------------------------
#endif // _PPM_ENCODER_H_